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Abstract: In recent research, metaheuristic strategies stand out as powerful tools for complex optimization, capturing 

widespread attention. This study proposes the Educational Competition Optimizer (ECO), an algorithm created for diverse 

optimization tasks. ECO draws inspiration from the competitive dynamics observed in real-world educational resource 

allocation scenarios, harnessing this principle to refine its search process. To further boost its efficiency, the algorithm divides 

the iterative process into three distinct phases: elementary, middle, and high school. Through this stepwise approach, ECO 

gradually narrows down the pool of potential solutions, mirroring the gradual competition witnessed within educational 

systems. This strategic approach ensures a smooth and resourceful transition between ECO's exploration and exploitation 

phases. The results indicate that ECO attains its peak optimization performance when configured with a population size of 

40. Notably, the algorithm's optimization efficacy does not exhibit a strictly linear correlation with population size. To 

comprehensively evaluate ECO's effectiveness and convergence characteristics, we conducted a rigorous comparative 

analysis, comparing ECO against nine state-of-the-art metaheuristic algorithms. This evaluation spanned 23 classical 

functions, 10 CEC2021 test functions, and various real-world engineering design challenges. Empirical findings consistently 

demonstrate that ECO consistently generates near-optimal solutions across the majority of scenarios, surpassing the 

performance of the nine other state-of-the-art optimization algorithms tested. ECO's remarkable success in efficiently 

addressing complex optimization problems underscores its potential applicability across diverse real-world domains. The 

additional resources and open-source code for the proposed ECO can be accessed at https://github.com/junbolian/ECO 

and https://aliasgharheidari.com/ECO.html. 
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1 Introduction 

 Many industries and sectors encounter a diverse range of  optimization problems. These issues frequently involve 
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complications like non-linear characteristics, discontinuities, uncertainties, large-scale dimensions, multiple objectives, and 

non-convex shapes [1]. This underscores the imperative for advancing more dependable optimization methodologies, mainly 

focusing on metaheuristic optimization algorithms [2, 3]. These methodologies exhibit stochastic characteristics and can 

approximate optimal solutions across diverse optimization problems [4, 5]. Significantly, the superiority of  metaheuristic 

optimization algorithms compared to traditional ones is credited to their lack of  reliance on gradient information and 

proficiency in bypassing local optima [6, 7]. 

Optimization scenarios may encompass numerous objective functions, addressing multiple criteria simultaneously or a 

single objective aimed at maximizing or minimizing a specific performance indicator [8]. In multi-objective optimization, the 

exploration of  Pareto optimal solutions is crucial for effectively balancing competing objectives [9, 10]. Conversely, single-

objective optimization concentrates on swiftly identifying the global optimum within the solution space, typically employing 

algorithms such as gradient-based techniques or metaheuristic approaches to attain optimal results [11, 12]. Single objective 

metaheuristic algorithms generally employ two significant search strategies: (i) exploration/diversification and (ii) 

exploitation/reinforcement. Exploration refers to the ability to explore the search space globally, avoiding local optimality 

and overcoming local optima traps [13]. Conversely, exploitation involves exploring nearby promising solutions to improve 

their local quality [14]. Achieving superior performance with an algorithm requires a delicate balance between these two 

strategies [15, 16]. Compared to traditional methods [17], a fundamental characteristic of  population-based algorithms is 

that they employ simple search and exploitation strategies. However, optimization performance can significantly differ 

among algorithms that employ distinct operators and mechanisms when confronted with diverse problem scenarios [18]. 

A widely accepted classification of  metaheuristic algorithms delineates them into four distinct classes: evolutionary 

algorithms, swarm intelligence algorithms, physics-inspired methodologies, and human-derived approaches [19]. 

Evolutionary algorithms imitate natural evolutionary processes and adopt operators inspired by biological behavior, such as 

crossover and mutation. A well-known example of  this class of  algorithms is the genetic algorithms (GA), which draws 

inspiration from Darwinian evolutionary principles. Other traditional approaches within this category include evolutionary 

programming [20], ant colony optimizer (ACO) [21], liver cancer algorithm [22], differential evolution [23], and evolutionary 

strategies [24]. 

Swarm intelligence algorithms represent an additional category of  metaheuristic algorithms, which simulate the 

collective behavior observed in animal herds or hunting packs [25]. The defining characteristic of  these algorithms lies in 

exchanging information among all group members throughout the optimization process [26]. Notable methods within this 

category include the RIME algorithm [27], colony predation algorithm [28], Harris Hawks optimization [29], slime mould 

algorithm [30, 31], whale optimization algorithm [32], weighted mean of  vectors [33], parrot optimizer [34], and hunger 

games search [35]. 

Physics-based methods form a distinct category of  optimization algorithms inspired by the principles of  real-world 

physical laws. These algorithms model the interaction of  search solutions through control rules that are anchored in physical 

processes. Among the notable algorithms in this category are the gravitational search algorithm [36], multi-verse optimizer 

[37], and charged system search [38]. 

The final category of  optimization techniques includes human-inspired methods, drawing from principles of  human 

cooperation and collective behavior. One frequently employed algorithm in this group is the social cognitive optimization 

[39], imperialist competition algorithm [40], motivated by human sociopolitical growth practices. Another algorithm within 

this group is the human evolutionary optimization algorithm [41]. 

While each algorithm contributes importantly to metaheuristic optimization, they also present specific limitations, 

which can be summarized as follows: 

⚫ Balancing Exploration and Exploitation: Metaheuristic algorithms typically involve two main phases: exploration 

and exploitation. The exploration phase is marked by high randomness, efficient updates, and variable solution quality 

across iterations. On the other hand, the exploitation phase features algorithmic stability, slower update rates, and 

consistent solution quality. Achieving the optimal balance between these phases is crucial for maximizing the 

algorithm's overall performance [42]. 

⚫ Parameter Sensitivity: Parameters play a crucial role in the optimization effectiveness of  many algorithms, and 

identifying the ideal parameters for a specific optimization challenge can be difficult. The absence of  qualitative analysis 

and consideration of  parameter sensitivity in newly introduced algorithms makes the task of  effectively addressing 



complex problems more challenging. 

⚫ Focus on Novelty vs. Computational Performance: Certain algorithms prioritize novelty by introducing new 

metaphors without sufficiently emphasizing the computational performance advantages for effectively solving complex 

problems [27]. This approach can lead to inefficiencies. Additionally, when these algorithms are only tested on a narrow 

range of  problems or a limited set of  test cases, they may exhibit high algorithmic complexity and low compatibility. 

Consequently, these algorithms may not perform effectively when applied to other types of  problems, yielding 

suboptimal results. 

Researchers typically do not rely on a single algorithm due to the No Free Lunch theorem [43], which asserts that no 

single algorithm can effectively address all optimization problems. Hence, it becomes imperative to consider adopting or 

proposing adjustments to existing algorithms, or even introducing novel approaches, to better tackle present scenarios or 

provide solutions to evolving challenges. This motivation underpins our proposal of  an effective optimization method, the 

educational competition optimizer. 

ECO is an innovative metaheuristic algorithm that draws inspiration from competitive dynamics observed in real-world 

scenarios of  educational resource allocation. It leverages this principle to enhance its search process. The algorithm 

comprises three phases: elementary, middle, and high school. As an effective human-based optimization model, ECO utilizes 

an innovative roulette-like structure that iteratively cycles through three distinct phases. This step-by-step approach 

progressively narrows the range of  potential solutions, mirroring the gradual competition within the education system. While 

ensuring population quality, ECO effectively enhances population diversity and strives to avoid local optima. 

In our experiments, we conducted parameter sensitivity analyses and qualitative experiments to elucidate the 

characteristics and adaptability of  the ECO algorithm. We discussed the algorithm's performance under various parameters 

and when applied to different problem domains. Additionally, to assess the algorithm comprehensively, we compared and 

tested it against nine highly cited primitive metaheuristics using the 23 classical benchmark functions [44] and 10 CEC2021 

test functions [45] test datasets. Furthermore, we verified the algorithm's capacity to solve real-world problems by applying 

it to five classical engineering optimization problems. 

In summary, this paper contributes in the following ways: 

1.  This research introduces the Educational Competition Optimizer (ECO), an education-inspired meta-heuristic 

algorithm. 

2. This work constructs new exploration, exploitation, and selection mechanisms within ECO, which can be applied to 

enhance other peer-to-peer algorithms. 

3. This paper provides detailed insights into the characteristics of  the ECO algorithm through parameter sensitivity 

experiments and qualitative analysis, facilitating its application to various optimization problems. 

4. This paper validates the algorithm's performance through comparative experiments involving nine famous algorithms. 

The results demonstrate that ECO either outperforms or shows comparable performance to these algorithms across 

various problem types. 

5. Demonstrates the applicability of  the ECO algorithm to several real-world engineering optimization problems, 

establishing its potential for addressing diverse optimization challenges. 

The rest of  the paper is organized as follows: Section 2 provides a detailed explanation of  our proposed ECO method. 

Section 3 presents the outcomes of  experiments performed on several benchmark functions and real-life issues. Finally, 

Section 4 concludes the paper and suggests directions for future research. 

2 The educational competition optimizer (ECO) 

This section elucidates the overall background of  ECO and formulates the optimization models. 

2.1 Inspiration 

Competition in education has become a prominent and contentious issue in contemporary society. As students 

continuously strive to enhance their abilities and fulfill the stringent admission criteria of  educational institutions, the pursuit 

of  higher education has become a relentless quest [46-49]. This pursuit mirrors a fundamental aspect of  optimization 

problems: navigating a vast and complex search space to find the optimal solution. As the level of  education rises, the 

intensity of  educational competition increases accordingly. The ECO algorithm continuously retains the elite by simulating 

this competitive advancement, aligning with the principles of  greedy selection and balanced exploration and exploitation in 

optimization algorithms. This approach not only justifies the methodology but also validates the algorithm's design. 



Drawing inspiration from this educational competition, the concept of  the educational competition optimizer emerged. 

This innovative approach offers a fresh perspective on metaheuristic algorithms by metaphorically connecting education and 

optimization. Consequently, it opens new avenues for devising improved strategies to tackle demanding real-world challenges.  

In the primary school stage, characterized by 𝑡 ≡ 1(𝑚𝑜𝑑 3), schools select their optimal educational locations based 

on the population's average location. Students, in turn, compete by aiming for the closest school as their target (approach). 

In the middle school stage, when 𝑡 ≡ 2(𝑚𝑜𝑑 3), the number of  schools decreases, prompting schools to consider the best 

educational location, factoring in both the population's mean position and the best position. Students continue to compete 

for the nearest school (proximity). Finally, in the high school stage, when 𝑡 ≡ 0(𝑚𝑜𝑑 3), schools exercise more careful 

consideration. They now consider the population's mean, best, and worst positions to determine their educational location. 

With only one school as their option, students strive to compete for this singular goal (proximity). 

2.2 Population initialization 

Given that the absence of  education leads to societal chaos, we employ logistic chaos mapping to simulate this 

phenomenon. The initialization formula for logistic chaos mapping, taking into account a population size of   𝑁, maximum 

iterations of  𝑀𝑎𝑥𝑖𝑡𝑒𝑟, and search space boundaries of  𝑙𝑏 (lower bound) and 𝑢𝑏 (upper bound), can be expressed as: 

 𝑥𝑖 = 𝛼 ∙ 𝑥𝑖−1 ∙ (1 − 𝑥𝑖−1), 0 ≤ 𝑥0 ≤ 1, 𝑖 = 1, 2,⋯ ,𝑁, 𝛼 = 4  (1) 

where ix  represents the 
thi  iteration value and 1ix −  represents the previous iteration value. Map the chaotic value, ix , 

to the search space: 

 𝑋𝑖 = 𝑙𝑏 + (𝑢𝑏 − 𝑙𝑏) ∙ 𝑥𝑖  (2) 

2.3 Mathematical model of  ECO 

The ECO algorithm is designed to simulate the dynamics of  educational competition, capturing the varying competitive 

strategies witnessed at different stages: primary school stages, middle school stages, and high school stages. As the 

competitive pressure heightens and the number of  available schools decreases, the optimization process of  ECO can be 

outlined in three steps. By adhering to these conditions, the ECO algorithm smoothly transitions from the exploration step 

to the exploitation step, relying on an enriched search strategy. We mathematically model the educational competition process 

as an optimization paradigm to identify the best solution while adhering to specific constraints. The mathematical model of  

ECO is proposed as follows. 

2.3.1 Stage 1: primary school stage 

During the elementary grades, schools determine suitable teaching locations by considering the average location of  the 

population. On the other hand, students set their individual goals based on the proximity of  their neighborhood school. At 

each iteration, the top 20% of  the population, ranked based on their fitness, is categorized as schools, while the remaining 

80% constitutes the students. It is important to note that this assignment of  roles to individuals such as schools or students 

can change dynamically throughout the iterations. w  is the adaptive step size. Fig. 1 visually illustrates the behavioral 

strategies both schools and students adopt at the primary school stage. Primary school students often opt for schools near 

their residences, considering factors like safety and convenience. In turn, educational institutions often adapt their locations 

to accommodate the average proximity of  their student body, facilitating accessibility and attendance. The mathematical 

representation of  this behavior is denoted by Eq. (3) and Eq. (4). 

 𝑆𝑐ℎ𝑜𝑜𝑙𝑠: 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 +𝑤 ∙ (𝑋𝑖𝑚𝑒𝑎𝑛
𝑡 − 𝑋𝑖

𝑡) ∙ 𝐿𝑒𝑣𝑦(𝑑𝑖𝑚) (3) 

 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ∶ 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 +𝑤 ∙ (𝑐𝑙𝑜𝑠𝑒(𝑋𝑖
𝑡) − 𝑋𝑖

𝑡) ∙ 𝑟𝑎𝑛𝑑𝑛  (4) 

𝑤 = 0.1𝑙𝑛 (2 −
𝑡

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)                                                      (5) 



 

Fig. 1 The behavior at the primary school stage 

In Eq. (3) and Eq. (4), 𝑋𝑖
𝑡 denotes the current position, while 𝑋𝑖

𝑡+1 signifies the position of  the subsequent update. 

𝑋𝑖𝑚𝑒𝑎𝑛
𝑡   represents the average position of  each element of  the vector for the ith school in the tth round of  iteration, and 

𝐿𝑒𝑣𝑦(𝐷) denotes the Levy distribution. 𝑐𝑙𝑜𝑠𝑒(𝑋) indicates the location of  the school closest to 𝑋. 𝑅𝑎𝑛𝑑𝑛 represents a 

random variable following a normal distribution. The pertinent parameters and functions can be further elucidated as follows: 

Average vector position  𝑋𝑖𝑚𝑒𝑎𝑛
𝑡  & Average position  𝑋𝑚𝑒𝑎𝑛

𝑡 : 𝑋𝑖𝑚𝑒𝑎𝑛
𝑡   represents the average position of  each 

element of  the vector for the ith school in the tth round of  iteration. 𝑋𝑚𝑒𝑎𝑛
𝑡   denotes the average position of  the current 

swarm, denoted as 𝑋𝑚𝑒𝑎𝑛
𝑡 . They are calculated as shown in Eq. (6). Where 𝑋𝑘𝑡 denotes the kth element in the vector 𝑋𝑖

𝑡. 

 {
𝑋𝑚𝑒𝑎𝑛
𝑡 =

1

𝑑𝑖𝑚
∑ 𝑋𝑘𝑡
𝑑𝑖𝑚
𝑘=1

𝑋𝑚𝑒𝑎𝑛
𝑡 =

1

𝑁
∑ 𝑋𝑘

𝑡𝑁
𝑘=1

  (6) 

Levy distribution: The rule for the Levy distribution is represented in Eq. (7), where 𝛾 is assigned the value of  1.5. 

 

{
  
 

  
 

𝐿𝑒𝑣𝑦(𝑑𝑖𝑚) =
𝜇∙𝜎

|𝑣|
1
𝛾

𝜇~𝑁(0, 𝑑𝑖𝑚)
𝑣~𝑁(0, 𝑑𝑖𝑚)

𝜎 = (
Γ(1+𝛾)∙sin (

𝜋𝛾

2
)

Γ(
1+𝛾

2
)∙𝛾∙2

1+𝛾
2

)𝛾+1

  (7) 

2.3.2 Stage 2: middle school stage 

Schools adopt a more sophisticated approach to choosing their teaching location during the middle school stage. They 

consider a combination of  the average and optimal population locations. Similarly, students at this level set their personal 

goals based on the proximity of  neighboring schools. In each iteration, the top 10% of  the population, ranked by their 

fitness, takes on the role of  schools, while the remaining 90% constitutes students. 

As middle school academic pressure gradually increases, students' patience in learning is denoted by 𝑃. Students are 

further categorized into two groups based on whether they are academically gifted or not. The judgmental threshold 𝐻 is 

set at 0.5 for this classification. For academically gifted students, their motivation to learn is represented by 𝐸, while those 

who are not academically talented have a fixed motivation value of 𝐸 = 1. 𝑤 is the adaptive step size. Fig. 2 visually 

presents the behavioral strategies both schools and students adopt at the middle school stage. Like elementary school, the 



competition among students for better educational resources intensifies. The mathematical representation of  these 

behaviors is expressed by Eq. (8) - Eq. (11).  

 𝑃 = 4 ∙ 𝑟𝑎𝑛𝑑𝑛 ∙ (1 −
𝑖

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)  (8) 

 𝐸 =
𝜋

𝑃
∙

𝑖

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
  (9) 

 𝑆𝑐ℎ𝑜𝑜𝑙𝑠: 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑚𝑒𝑎𝑛

𝑡 ) ∙ 𝑒𝑥𝑝(
𝑖

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
− 1) ∙ 𝐿𝑒𝑣𝑦(𝑑𝑖𝑚)  (10) 

 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠: 𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑡 −𝑤 ∙ 𝑐𝑙𝑜𝑠𝑒(𝑋𝑖

𝑡) − 𝑃 ∙ (𝐸 ∙ 𝑤 ∙ 𝑐𝑙𝑜𝑠𝑒(𝑋𝑖
𝑡) − 𝑋𝑖

𝑡), 𝑅1 < 𝐻

𝑋𝑖
𝑡 − 𝑤 ∙ 𝑐𝑙𝑜𝑠𝑒(𝑋𝑖

𝑡) − 𝑃 ∙ (𝑤 ∙ 𝑐𝑙𝑜𝑠𝑒(𝑋𝑖
𝑡) − 𝑋𝑖

𝑡), 𝑅1 ≥ 𝐻
  (11) 

 

Fig. 2 The behavior at the middle school stage 

The talent values of  different students are simulated using the random number 𝑅1, which takes on a value within the 

range of  [0, 1]. 

2.3.3 Stage 3: high school stage 

At the high school level, schools adopt a meticulous approach to selecting their teaching locations. They consider not 

only the average population location but also the best and worst locations within their population. This comprehensive 

assessment helps them make informed decisions about their educational location. In contrast, all students converge toward 

the current best location, which is identified as the best high school location. The optimization process motivates every 

student to strive for admission to this best high school. During each iteration, the top 10% of  the population, determined 

by their fitness, are designated schools, while the remaining 90% continue as students. Fig. 3 provides a visual representation 

of  the behavioral strategies adopted by both schools and students at the high school level. High schools adapt their locations 

based on student demographics while students vie for superior educational opportunities, transcending geographical 

constraints in their pursuit of  excellence. Eq. (12) and Eq. (13) represent the mathematical expressions for this behavior. 

 𝑆𝑐ℎ𝑜𝑜𝑙𝑠: 𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + (𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡) ∙ 𝑟𝑎𝑛𝑑𝑛 − (𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑋𝑖

𝑡) ∙ 𝑟𝑎𝑛𝑑𝑛  (12) 

 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠: 𝑋𝑖
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑃 ∙ (𝐸 ∙ 𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡), 𝑅2 < 𝐻

𝑋𝑏𝑒𝑠𝑡
𝑡 − 𝑃 ∙ (𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡), 𝑅2 ≥ 𝐻

  (13) 



Fig. 3 The behavior at 

the high school stage 

The talents of  individual students are represented by a random number denoted as 𝑅2, which falls within the range of  

[0, 1].  

2.4 Pseudo-code of  the ECO algorithm 

Algorithm 1: Pseudo-code of the ECO algorithm 

1: Initialize the ECO parameters 

2: Initialize the solutions' positions randomly (Logistic Chaos Mapping) 

3: For i = 1:Max_iter do 

4: Calculate the fitness function 

5: Find the best position and worst position 

6: Calculate R1, R2, P, E 

7: For j = 1:N do 

8: Stage 1: Primary school competition 

9: If mod(i, 3) == 1 Then 

10: If j = 1:G1Number Then 

11: Update schools position by Eq. (3) 

12: Elseif j = G1Number+1:N Then 

13: Update students position by Eq. (4) 

14: End 

15: Stage 2: middle school competition 

16: Elseif mod(i, 3) == 2 Then 

17: If j = 1:G2Number Then 

18: Update schools position by Eq. (10) 

19: Elseif j = G2Number+1:N Then 

20: Update students position by Eq. (11) 

21: End 

22: Stage 3:High school competition 

23: Elseif mod(i, 3) == 0 Then 

24: If j = 1:G2Number Then 



25: Update schools position by Eq. (12) 

26: If j = G2Number+1:N Then 

27: Update students position by Eq. (13) 

28: End 

29: End 

30:            If 𝑋𝑖
𝑡+1 > 𝑋𝑖

𝑡 Then 

31:                 Select the optimal solution using the positive greedy selection mechanism 

32:           End 

33: End 

34: Return the best solution 

35: End 

In ECO, the optimization process commences with the random generation of  a predetermined set of  candidate 

solutions, known as the population. Through iterative trajectories, ECO's search strategy explores regions proximate to the 

optimal solution or where the best solution has been identified. Each solution dynamically updates its position based on the 

best solution attained during ECO's optimization process. ECO places significant emphasis on maintaining a balance 

between its search strategies: exploration and exploitation. Six distinct exploration and exploitation search strategies are 

introduced to achieve this balance, involving three phases of  interaction between schools and students at different 

educational levels. 

 
Fig. 4 Flowchart of  ECO algorithm 

The search process in ECO continues until it meets the predetermined termination criterion. The full architecture of  

the algorithm is detailed through pseudo-code in Algorithm 1 and illustrated in Fig. 4, providing a thorough walkthrough of  

the entire optimization process, including its iterative stages and search tactics. ECO leverages the strengths of  both 

exploration and exploitation phases, ensuring a thorough examination of  the search space and efficient convergence to 

optimal solutions.  

2.5 Computational complexity of  ECO 

In this section, we provide an overview of  the overall computational complexity associated with the ECO approach. 

The computational burden of  ECO primarily hinges on three key elements: the initialization of  solutions, the computation 

of  fitness functions, and the solution update mechanism. Let us consider 𝑁 as the count of  solutions and 𝑂(𝑁) as the 

computational complexity associated with the initialization of  these solutions. The computational complexity of  the 

updating processes is𝑂(𝑇 × 𝑁) + 𝑂(𝑇 × 𝑁 × 𝑑𝑖𝑚) + 𝑂(𝑇 × 𝑁 × 𝑙𝑜𝑔𝑁) , which consists of  exploring for the best 

positions and updating the positions of  all solutions, where the total number of  iterations is called 𝑇 and the dimension size 

of  the given problem is called 𝑑𝑖𝑚.  

3 Results and discussion 

We assess the efficacy of  ECO algorithm by subjecting it to rigorous testing across 23 classical benchmark functions 

[44], 10 CEC2021 test functions [45], and 6 real-world engineering problems spanning various domains. Subsequently, we 



conduct a comprehensive comparative analysis by juxtaposing the performance results of  ECO against those of  nine 

established metaheuristic algorithms documented in the existing literature, including Ant Lion Optimizer (ALO) [50], Grey 

Wolf  Optimizer (GWO) [2], Whale Optimization Algorithm (WOA) [32], Salp Swarm Algorithm (SSA) [51], Arithmetic 

Optimization Algorithm (AOA) [52], Harris Hawks Optimization (HHO) [29], Sine Cosine Algorithm (SCA) [53], Multi-

Verse Optimizer 

(MVO) [37], Remora 

Optimization 

Algorithm (ROA) [54]. 

The algorithms 

utilized and their 

specific control 

parameters are 

outlined in Table 1. 

We executed these 

algorithms on both 

classical and 

CEC2021 test 

functions as well as 

engineering design 

problems, utilizing 

MATLAB R2023a. 

For each algorithm, 

we conducted 30 

independent runs. To assess the quality of  the obtained solutions, we employed five performance indicators: best, worst, 

average, standard deviation (STD), and median values. These indicators were used to showcase the outcomes achieved by 

the ECO approach. 

Researchers frequently utilize a set of  23 classical test functions to assess the performance and capabilities of  

optimization algorithms. These test functions have been widely employed in numerous optimization algorithm studies. The 

23 classical test functions are categorized into three types: single-peak, multi-peak, and fixed-dimension multi-peak functions. 

In Table A1 - Table A3, these functions are delineated alongside their specific details, including function types, search ranges, 

and theoretical optimal values. 

Table 1 Parameter settings 

To highlight the effectiveness of  the ECO algorithm, we specifically chose to evaluate it using the CEC2021 test 

functions. These functions exhibit a wide array of  characteristics, including unimodal, basic, hybrid, and composite functions. 

For a deeper understanding of  these selected functions, detailed information is provided in Table A4. 

Table A1 Unimodal benchmark functions 

 

Function Dim Range Shift position 
minf  

𝐹1(𝑥) =∑ 𝑥𝑖
2

𝑛

𝑖=1
 30 [−100,100] [−30,−30,⋯ ,−30] 0 

𝐹2(𝑥) =∑ |𝑥𝑖|
𝑛

𝑖=1
+∏ |𝑥𝑖|

𝑛

𝑖=1
 30 [−10,10] [−3,−3,⋯ ,−3] 0 

𝐹3(𝑥) =∑ (∑ 𝑥𝑗
𝑛

𝑗=1
)2

𝑛

𝑖=1
 30 [−100,100] [−30,−30,⋯ ,−30] 0 

𝐹4(𝑥) =∑ (∑ 𝑥𝑗
𝑖

𝑗=1
)2

𝑛

𝑖=1
 30 [−100,100] [−30,−30,⋯ ,−30] 0 

𝐹5(𝑥) =∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2

𝑛−1

𝑖=1

+ (𝑥𝑖 − 1)
2] 

30 [−30,30] [−15,−15,⋯ ,−15] 0 

Algorithms Name of  parameters Value of  parameters 

ALO 𝐼  ratio  10 

 𝑤 2-6 

GWO Convergence parameter  𝑎  Linear reduction from 2 to 0 

WOA 𝛼  Decreased from 2 to 0 

 𝑏  2 

SSA 𝑣0  0 

AOA 𝛼   5 

 𝜇   0.05 

HHO 𝐸0 [-1,1] 

SCA - - 

MVO  𝑊𝐸𝑃𝑚𝑎𝑥 1 

 𝑊𝐸𝑃𝑚𝑖𝑛 0.2 

ROA - - 



𝐹6(𝑥) =∑ (|𝑥𝑖 + 0.5|)
2

𝑛

𝑖=1
 30 [−100,100] [−750,−750,⋯ ,−750] 0 

𝐹7(𝑥) = ∑ 𝑖𝑥4𝑛
𝑖=1 +

 𝑟𝑎𝑛𝑑𝑜𝑚[0,1)  
30 [−1.28,1.28] [−0.25,−0.25,⋯ ,−0.25] 0 

 

 

Table A2 Multimodal benchmark functions. 

 

Function Dim Range Shift position 
minf  

𝐹8(𝑥) =∑ −𝑥𝑖𝑠𝑖𝑛 (√|𝑥𝑖|)
𝑛

𝑖=1
 30 [−500,500] [−300,⋯ ,−300] −12569.5 

𝐹9(𝑥) =∑ [𝑥𝑖
2 − 10 𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 30 [−5.12,5.12] [−2,−2,⋯ ,−2] 0 

𝐹10(𝑥) = −20𝑒𝑥𝑝(−0.2√
1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1
) 

−𝑒𝑥𝑝 (
1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛

𝑖=1
) + 20 + 𝑒 

30 [−32,32]  0 

𝐹11(𝑥) =
1

4000
∑ 𝑥𝑖

2
𝑛

𝑖=1

−∏ 𝑐𝑜𝑠 (
𝑥𝑖

√(𝑖)
)

𝑛

𝑖=1
+ 1 

30 [−600,600] [−400,⋯ ,−400] 0 

𝐹12(𝑥) =
𝜋

𝑛
{10𝑠𝑖𝑛(𝜋𝑦𝑖) +∑(𝑦𝑖 − 1)

2[1

𝑛−1

𝑖=1

+ 
       10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)

2} 

                     +∑𝑢(𝑥𝑖, 10,100,4)

𝑛

𝑖=1

 

                     𝑦𝑖 = 1 +
𝑥𝑖 + 1

4
 

 𝑢(𝑥𝑖, 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚𝑥𝑖 > 𝑎

0 − 𝑎 < 𝑥𝑖 < 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚𝑥𝑖 < −𝑎

 

30 [−50,50] [−30,−30,⋯ ,−30] 0 

𝐹13(𝑥) = 0.1 {𝑠𝑖𝑛
2(3𝜋𝑥1)

+∑(𝑥𝑖 − 1)
2[1 +

𝑛1

𝑖=1

 

𝑠𝑖𝑛2(3𝜋𝑥𝑖 + 1)]
+ (𝑥𝑛 − 1)

2[1
+ 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]} 

+∑𝑢(𝑥𝑖, 5,100,4)

𝑛

𝑖=1

 

30 [−50,50] [−100,⋯ ,−100] 0 

 

 

Table A3 Fixed-dimension multimodal benchmark functions. 

Function Dim Range Shift position 𝑓𝑚𝑖𝑛 

𝐹14(𝑥)

= (
1

500
+∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)
62

𝑖=1

25

𝑗=1

)

−1

 
2 [−65,65] [−2,−2,⋯ ,−2] 1 



𝐹15(𝑥) =∑[𝑎𝑖 −
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

]

11

𝑖=1

2

 4 [−5,5] [−2,−2,⋯ ,−2] 0.0003075 

𝐹16(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1
6 + 𝑥1𝑥2 − 4𝑥2

2

+ 4𝑥2
4 

2 [−5,5] [−2,−2,⋯ ,−2] −1.0316285 

𝐹17(𝑥) = (𝑥2 −
5.1

4𝜋2
𝑥1
2 +

5

𝜋
𝑥1 − 6)

+ 10 (1 −
1

8𝜋
) 𝑐𝑜𝑠 𝑥1 + 10 

2 [−5,5] [−2,−2,⋯ ,−2] 0.398 

𝐹18(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)
2(19 − 14𝑥1

+ 3𝑥1
2 − 14𝑥2 + 16𝑥1𝑥2

+ 3𝑥2
2)] 

× [30 + (2𝑥1 − 3𝑥2)
2

× (18 − 32𝑥1 + 12𝑥1
2

+ 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2)] 

2 [−2,2] [−2,−2,⋯ ,−2] 3 

𝐹19(𝑥) = −∑𝑐𝑖𝑒𝑥𝑝

4

𝑖=1

(−∑𝑎𝑖𝑗(𝑥𝑗

3

𝑗=1

− 𝑝𝑖𝑗)
2
) 

3 [1,3] [−2,−2,⋯ ,−2] −3.86 

𝐹20(𝑥) = −∑𝑐𝑖𝑒𝑥𝑝

4

𝑖=1

(−∑𝑎𝑖𝑗(𝑥𝑗

6

𝑗=1

− 𝑝𝑖𝑗)
2
) 

6 [0,1] [−2,−2,⋯ ,−2] −3.32 

𝐹21(𝑥) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

5

𝑖=1

 4 [0,10] [−2,−2,⋯ ,−2] −10.1532 

𝐹22(𝑥) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

7

𝑖=1

 4 [0,10] [−2,−2,⋯ ,−2] −10.4028 

𝐹23(𝑥) = −∑[(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1

1

𝑖=1

 4 [0,10] [−2,−2,⋯ ,−2] −10.536 

 

Table A4 CEC2021 benchmark functions. 

 No. Functions 𝐹𝑖
∗  

Unimodal Function 1 Shifted and Rotated Bent Cigar Function  100 

Basic Functions 

2 Shifted and Rotated Schwefel's Function  1100 

3 Shifted and Rotated Lunacek bi-Rastrigin Function 700 

4 Expanded Rosenbrock's plus Griewangk's Function  1900 

Hybrid Functions 

5 Hybrid Function 1 (N= 3)  1700 

6 Hybrid Function 2 (N= 4)  1600 

7 Hybrid Function 3 (N= 5)  2100 

Composition 
Functions 

8 Composition Function 1(N= 3)  2200 

9 Composition Function 2 (N= 4)  2400 

10 Composition Function 3(N= 5)  2500 



Search range: [-100,100]dim 

 

Benchmark datasets serve as widely accepted instruments for assessing the performance of  various technologies against 

established norms [55, 56]. They facilitate the evaluation of  distinct computational dimensions, thereby aiding in determining 

which technology surpasses the rest in multiple fields [57, 58]. By evaluating the algorithm's performance across these 33 

test functions, we can gain insights into its effectiveness and efficiency in solving optimization problems. 

3.1 Parameter sensitivity analysis 

Establishing the optimal population size is paramount for a developed algorithm. In our evaluation of  optimization 

algorithms, we employed the 23 classical test functions to gauge their performance and capabilities. 

Table 2 Results of  unimodal benchmark functions (different population) 

 

 

 

Table 3 

Results of  

multimodal 

benchmark 

functions 

(different 

population) 

 

Function Item N=10 N=20 N=30 N=40 N=50 N=60 

F8 

Best -1.21E+04 -1.21E+04 -1.23E+04 -1.24E+04 -1.24E+04 -1.24E+04 
Median -1.08E+04 -1.12E+04 -1.14E+04 -1.16E+04 -1.17E+04 -1.17E+04 
Mean -1.03E+04 -1.11E+04 -1.13E+04 -1.14E+04 -1.14E+04 -1.15E+04 
Worst -7.51E+03 -8.96E+03 -9.25E+03 -8.68E+03 -8.49E+03 -8.08E+03 
STD 1.54E+06 4.51E+05 7.28E+05 9.98E+05 9.49E+05 7.74E+05 

F9 

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
Median 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F10 

Best 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 
Median 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 
Mean 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 
Worst 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F11 

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
Median 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
Worst 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F12 

Best 2.44E-04 5.85E-05 4.32E-06 3.71E-06 1.54E-06 2.88E-07 
Median 2.63E-03 5.21E-04 8.88E-05 4.07E-05 1.59E-05 5.67E-06 
Mean 5.03E-03 7.11E-04 1.35E-04 6.02E-05 4.11E-05 1.87E-05 
Worst 3.11E-02 3.26E-03 6.94E-04 3.89E-04 3.03E-04 1.01E-04 
STD 4.02E-05 4.40E-07 2.12E-08 5.04E-09 4.09E-09 6.35E-10 

F13 

Best 4.14E-03 9.56E-04 1.36E-04 8.81E-05 4.14E-05 1.19E-05 
Median 2.45E-01 2.12E-02 1.26E-02 1.16E-02 1.12E-02 6.31E-04 
Mean 6.79E-01 2.48E-01 3.22E-01 1.10E-01 5.20E-02 1.06E-01 
Worst 2.97E+00 2.97E+00 2.97E+00 2.66E+00 1.22E+00 2.97E+00 
STD 1.07E+00 5.36E-01 7.80E-01 2.29E-01 4.72E-02 2.82E-01 

 

Function Item N=10 N=20 N=30 N=40 N=50 N=60 

F1 

Best 2.10E-77 5.89E-80 1.38E-76 9.69E-92 4.68E-78 8.69E-89 
Median 4.43E-60 1.23E-64 4.76E-64 1.24E-62 1.49E-61 1.42E-67 
Mean 7.41E-44 1.48E-51 5.27E-46 3.77E-49 3.09E-45 1.41E-54 
Worst 2.22E-42 4.39E-50 1.58E-44 1.13E-47 9.28E-44 3.23E-53 
STD 1.58E-85 6.21E-101 8.06E-90 4.12E-96 2.77E-88 3.46E-107 

F2 

Best 1.22E-39 3.92E-40 1.02E-41 2.01E-45 6.58E-46 4.96E-42 
Median 5.64E-30 1.83E-31 9.71E-32 2.41E-33 2.29E-35 6.08E-34 
Mean 7.68E-24 8.54E-21 2.24E-27 1.33E-27 2.45E-24 2.51E-28 
Worst 1.55E-22 2.56E-19 5.72E-26 2.71E-26 7.34E-23 6.68E-27 
STD 8.79E-46 2.12E-39 1.05E-52 2.43E-53 1.74E-46 1.44E-54 

F3 

Best 2.53E-74 2.59E-80 1.63E-71 8.41E-83 1.50E-88 4.57E-84 
Median 1.31E-59 6.82E-61 1.30E-60 1.12E-63 4.40E-66 1.66E-66 
Mean 2.97E-44 1.70E-51 8.43E-46 1.72E-52 2.99E-48 5.19E-50 
Worst 7.92E-43 5.10E-50 2.53E-44 5.17E-51 8.76E-47 1.53E-48 
STD 2.04E-86 8.38E-101 2.06E-89 8.61E-103 2.47E-94 7.49E-98 

F4 

Best 3.08E-39 8.17E-38 1.31E-43 7.52E-45 1.88E-44 5.47E-43 
Median 3.87E-30 5.62E-30 1.32E-31 4.19E-33 5.66E-34 3.93E-34 
Mean 1.28E-26 7.13E-26 1.31E-27 2.90E-26 2.16E-28 1.53E-24 
Worst 2.86E-25 8.37E-25 3.82E-26 8.22E-25 6.04E-27 2.70E-23 
STD 2.65E-51 4.03E-50 4.68E-53 2.18E-50 1.18E-54 3.22E-47 

F5 

Best 2.73E+01 2.71E+01 2.67E+01 2.65E+01 2.56E+01 2.58E+01 
Median 2.84E+01 2.77E+01 2.73E+01 2.69E+01 2.67E+01 2.66E+01 
Mean 2.82E+01 2.77E+01 2.73E+01 2.70E+01 2.67E+01 2.66E+01 
Worst 2.87E+01 2.84E+01 2.80E+01 2.77E+01 2.74E+01 2.76E+01 
STD 1.41E-01 7.90E-02 1.28E-01 1.47E-01 1.27E-01 1.48E-01 

F6 

Best 1.24E-02 1.52E-03 4.72E-04 1.54E-04 3.94E-05 1.59E-05 
Median 6.71E-02 1.00E-02 2.75E-03 1.01E-03 3.53E-04 2.89E-04 
Mean 1.36E-01 1.77E-02 5.42E-03 2.69E-03 7.61E-04 5.27E-04 
Worst 5.91E-01 1.34E-01 5.62E-02 2.15E-02 3.30E-03 4.15E-03 
STD 2.56E-02 6.49E-04 1.03E-04 2.13E-05 7.11E-07 6.93E-07 

F7 

Best 2.08E-05 1.06E-05 1.06E-05 5.47E-06 4.30E-06 1.97E-05 
Median 5.80E-04 2.59E-04 2.73E-04 1.72E-04 1.16E-04 1.21E-04 
Mean 9.09E-04 3.95E-04 3.42E-04 2.01E-04 1.51E-04 1.50E-04 
Worst 2.97E-03 1.58E-03 9.83E-04 6.10E-04 5.59E-04 5.39E-04 
STD 6.97E-07 1.54E-07 7.17E-08 2.83E-08 1.78E-08 1.06E-08 



Table 4 Results of  fixed-dimension multimodal benchmark functions (different population) 

 
Function Item N=10 N=20 N=30 N=40 N=50 N=60 

F14 

Best 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 
Median 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 
Mean 2.61E+00 1.49E+00 1.36E+00 1.03E+00 1.78E+00 1.45E+00 
Worst 1.27E+01 5.93E+00 3.97E+00 1.99E+00 1.27E+01 1.27E+01 
STD 6.34E+00 1.35E+00 6.21E-01 3.18E-02 5.29E+00 4.40E+00 

F15 

Best 3.08E-04 3.07E-04 3.07E-04 3.07E-04 3.07E-04 3.07E-04 
Median 6.42E-04 7.80E-04 7.40E-04 7.62E-04 3.11E-04 3.08E-04 
Mean 2.63E-03 2.07E-03 1.97E-03 1.40E-03 1.29E-03 5.46E-04 
Worst 2.04E-02 2.04E-02 2.04E-02 2.04E-02 2.04E-02 1.22E-03 
STD 3.50E-05 2.40E-05 2.43E-05 1.25E-05 1.27E-05 1.16E-07 

F16 

Best -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 
Median -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 
Mean -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 
Worst -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 
STD 6.11E-14 1.76E-16 5.27E-18 2.71E-19 1.70E-24 2.60E-31 

F17 

Best 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 
Median 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 
Mean 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 
Worst 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 
STD 1.93E-11 1.05E-13 3.25E-13 2.95E-17 1.03E-15 8.26E-18 

F18 

Best 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 
Median 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 
Mean 4.80E+00 3.00E+00 3.90E+00 3.00E+00 3.00E+00 3.00E+00 
Worst 3.00E+01 3.00E+00 3.00E+01 3.00E+00 3.00E+00 3.00E+00 
STD 4.54E+01 7.15E-27 2.35E+01 1.91E-29 5.36E-30 4.84E-30 

F19 

Best -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 
Median -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 
Mean -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 
Worst -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 
STD 1.82E-12 3.46E-21 2.26E-26 6.80E-30 6.25E-30 5.94E-30 

F20 

Best -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00 
Median -3.32E+00 -3.20E+00 -3.26E+00 -3.32E+00 -3.20E+00 -3.20E+00 
Mean -3.27E+00 -3.26E+00 -3.26E+00 -3.27E+00 -3.24E+00 -3.26E+00 
Worst -3.20E+00 -3.20E+00 -3.20E+00 -3.20E+00 -3.20E+00 -3.20E+00 
STD 3.42E-03 3.52E-03 3.53E-03 3.52E-03 2.97E-03 3.52E-03 

F21 

Best -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 
Median -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 
Mean -9.30E+00 -8.90E+00 -9.57E+00 -9.98E+00 -9.39E+00 -1.02E+01 
Worst -2.73E-01 -2.73E-01 -2.73E-01 -5.06E+00 -2.63E+00 -1.02E+01 
STD 6.66E+00 8.21E+00 4.80E+00 8.37E-01 3.91E+00 8.41E-12 

F22 

Best -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 
Median -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 
Mean -7.74E+00 -8.95E+00 -9.11E+00 -9.38E+00 -9.21E+00 -9.54E+00 
Worst -2.94E-01 -2.77E+00 -1.84E+00 -2.77E+00 -1.84E+00 -2.77E+00 
STD 1.53E+01 7.12E+00 8.56E+00 6.74E+00 7.34E+00 5.03E+00 

F23 

Best -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 
Median -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 
Mean -8.76E+00 -9.89E+00 -9.43E+00 -1.03E+01 -9.91E+00 -9.63E+00 
Worst -3.22E-01 -1.86E+00 -1.68E+00 -3.84E+00 -2.42E+00 -1.86E+00 
STD 1.09E+01 4.04E+00 7.97E+00 1.45E+00 3.75E+00 5.63E+00 

 

Tables 2 to 4 present a detailed analysis of  the search results generated by the ECO algorithm following 500 iterations 

across different population sizes, namely N=10, 20, 30, 40, 50, and 60. These tables provide comprehensive insights into the 

algorithm's performance, showcasing its efficacy in optimizing solutions. 

Fig. 5 depicts the convergence curve displaying the fitness values attained by the ECO algorithm during its quest for 

optimal solutions spanning from F1 to F23 across a range of  population sizes. This graphical representation aids in evaluating 

and comparing the algorithm's performance across different types of  functions and population sizes. 



 
  Fig. 5 The influence of  the population size  



 
Fig. 5 (Continued) 

Through our analysis, we observed a positive correlation between the search ability of  the ECO algorithm and the 

population size. The results in Fig. 5 can be categorized into four groups based on their impact on the outcomes: 

1. No effect on the results: Cases such as F11, F17 and F19 show minimal variation, indicating that parameter changes 

have little influence on the algorithm's performance. 

2. Slight effect on the results: F1-F4 demonstrate slight variations due to parameter changes, but the impact is relatively 

minor. 

3. Large effect on the results: F12 and F15 exhibit significant performance variations due to parameter changes. 

4. Larger populations lead to worse results: F4 and F23 show that increasing the population size can result in poorer 

algorithm performance. 

Most cases fall into the first two categories, indicating the ECO model's strong robustness. It demonstrates stable and 

reliable performance across various scenarios and parameter settings. Notably, all the test functions exhibit rapid convergence 

during the initial iteration phase, thanks to the alternating search dynamics of  the three educational competition phases. This 

underscores ECO's remarkable ability to locate near-optimal solutions swiftly. 

Intuitively, larger population sizes generally enhance the search scope and improve the likelihood of  discovering an 

optimal solution. However, substantial populations may significantly prolong computational time. Notably, empirical findings 

from ECO studies reveal that the model's performance is relatively unaffected by population size variations. In certain test 

scenarios, like functions F13, F20, and F23, increasing population size actually diminishes the optimization efficacy of  the 

ECO model. To balance computational efficiency and optimization performance, we opt for a population size parameter of  

N = 40 in the ECO framework. 

To affirm the efficacy of  the ECO algorithm, we executed experiments and scrutinized its convergence and trajectories. 

Fig. 6 vividly presents these findings, offering a glimpse into the evolution of  search points within the population and the 

concurrent fluctuations in the average fitness as the ECO algorithm pursues the optimal solution with a population size of  

N = 40. This visualization in Fig. 6 provides intricate insights into the dynamic interplay between schools and students 

throughout the optimization process.  



 

Fig. 6 Qualitative results for the studied problems  



 

Fig. 6 (Continued)  



 

Fig. 6 (Continued) 



 

Fig. 6 (Continued) 

3.2 Comparison of  different algorithms on classical test functions 

To rigorously assess and contrast the search capabilities of  the ECO algorithm, we meticulously selected nine state-of-

the-art algorithms for a comparative analysis on a classical test function. To ensure impartiality in the comparison, all 

examined algorithms underwent execution with uniform parameters: 500 iterations and a population size of  40, aligning 

precisely with the settings of  ECO. 

This meticulous approach empowers us to gauge the relative performance and efficacy of  ECO against the chosen 

algorithms under uniform experimental conditions. Through this meticulously crafted evaluation framework, we can 

thoroughly scrutinize and discern the search prowess of  the algorithms on an equal footing. 



 
Fig. 7 Comparison of  convergence rates for different algorithms   

 

Fig. 7 (Continued) 

 

Table 5 Results of  unimodal benchmark functions (different algorithms) 
 Item ECO ALO GWO WOA SSA AOA HHO SCA MVO ROA 

F1 
Best 9.69E-92 7.59E-05 2.15E-32 3.73E-91 1.19E-08 5.67E-

243 
6.67E-

116 
8.60E-03 4.52E-01 3.66E-34 

Median 1.24E-62 1.87E-04 3.66E-31 4.28E-85 3.05E-08 4.14E- 3.48E- 1.25E+00 9.47E-01 4.13E-21 



132 107 
Mean 3.77E-49 2.12E-04 5.68E-31 4.10E-79 3.44E-08 7.77E-24 1.88E-95 5.98E+00 9.96E-01 1.11E-12 
Worst 1.13E-47 5.37E-04 2.84E-30 1.22E-77 8.11E-08 2.33E-22 5.60E-94 1.03E+02 1.95E+00 3.34E-11 
STD 4.12E-96 1.16E-08 4.70E-61 4.76E-

156 
2.52E-16 1.75E-45 1.01E-

188 
3.39E+02 1.46E-01 3.60E-23 

F2 

Best 2.01E-45 7.43E-01 3.19E-19 9.57E-58 9.09E-02 0.00E+00 3.63E-61 3.00E-05 3.96E-01 5.89E-16 
Median 2.41E-33 1.87E+01 1.07E-18 2.86E-55 1.32E+00 0.00E+00 2.06E-54 5.88E-03 7.13E-01 1.63E-10 
Mean 1.33E-27 5.00E+01 1.50E-18 4.20E-53 1.45E+00 0.00E+00 2.34E-50 1.38E-02 4.10E+00 3.77E-08 
Worst 2.71E-26 1.22E+02 4.11E-18 6.40E-52 3.71E+00 0.00E+00 6.81E-49 7.00E-02 9.90E+01 7.54E-07 
STD 2.43E-53 2.33E+03 1.16E-36 1.51E-

104 
8.92E-01 0.00E+00 1.49E-98 3.26E-04 3.11E+02 1.90E-14 

F3 

Best 8.41E-83 1.28E+03 5.66E-10 1.83E+04 9.13E+01 5.79E-
153 

1.12E-
102 

1.26E+03 4.14E+01 1.27E-23 

Median 1.12E-63 3.00E+03 4.54E-08 3.78E+04 7.56E+02 6.96E-43 6.05E-93 7.67E+03 1.30E+02 6.98E-15 
Mean 1.72E-52 3.11E+03 3.33E-07 3.78E+04 1.03E+03 4.76E-03 1.73E-84 7.82E+03 1.46E+02 1.69E-10 
Worst 5.17E-51 6.73E+03 2.74E-06 5.32E+04 3.60E+03 5.31E-02 3.50E-83 1.67E+04 3.23E+02 5.00E-09 
STD 8.61E-

103 
1.80E+06 4.63E-13 7.32E+07 7.65E+05 1.24E-04 4.25E-

167 
2.42E+07 4.03E+03 8.05E-19 

F4 

Best 7.52E-45 7.65E+00 8.86E-09 2.76E-01 3.80E+00 1.40E-84 3.40E-58 1.18E+01 6.48E-01 5.72E-17 
Median 4.19E-33 1.29E+01 6.90E-08 5.40E+01 8.43E+00 2.63E-02 4.15E-54 3.46E+01 1.62E+00 7.30E-11 
Mean 2.90E-26 1.38E+01 1.50E-07 5.13E+01 8.27E+00 2.32E-02 1.66E-50 3.22E+01 1.70E+00 6.56E-09 
Worst 8.22E-25 2.04E+01 9.64E-07 9.22E+01 1.31E+01 4.58E-02 4.25E-49 4.66E+01 3.18E+00 9.96E-08 
STD 2.18E-50 1.07E+01 5.09E-14 6.73E+02 6.86E+00 3.43E-04 5.83E-99 8.85E+01 3.79E-01 4.95E-16 

F5 

Best 2.65E+01 2.38E+01 2.56E+01 2.68E+01 2.62E+01 2.76E+01 1.93E-05 3.30E+01 3.07E+01 2.73E-06 
Median 2.69E+01 1.15E+02 2.66E+01 2.76E+01 7.89E+01 2.84E+01 2.46E-03 1.88E+03 2.39E+02 2.65E-02 
Mean 2.70E+01 3.34E+02 2.69E+01 2.76E+01 2.12E+02 2.84E+01 4.34E-03 1.67E+04 6.23E+02 2.04E+00 
Worst 2.77E+01 2.10E+03 2.86E+01 2.87E+01 1.28E+03 2.89E+01 1.96E-02 1.33E+05 2.85E+03 2.87E+01 
STD 1.47E-01 2.72E+05 6.98E-01 1.50E-01 9.32E+04 7.47E-02 2.63E-05 9.73E+08 7.41E+05 5.09E+01 

F6 

Best 1.54E-04 6.39E-05 4.80E-05 4.34E-02 1.42E-08 2.49E+00 1.19E-08 4.11E+00 4.60E-01 1.49E-06 
Median 1.01E-03 2.10E-04 5.02E-01 1.56E-01 3.07E-08 3.09E+00 3.30E-05 7.74E+00 8.44E-01 7.05E-04 
Mean 2.69E-03 2.42E-04 5.58E-01 1.88E-01 3.27E-08 3.05E+00 9.57E-05 1.77E+01 9.20E-01 3.79E-03 
Worst 2.15E-02 6.72E-04 1.00E+00 7.29E-01 8.01E-08 3.47E+00 4.35E-04 1.63E+02 1.38E+00 3.55E-02 
STD 2.13E-05 2.04E-08 8.56E-02 1.90E-02 1.78E-16 6.36E-02 1.50E-08 9.48E+02 6.43E-02 7.30E-05 

F7 

Best 5.47E-06 6.12E-02 3.29E-04 7.78E-05 4.94E-02 4.47E-07 7.19E-07 7.64E-03 7.17E-03 1.74E-05 
Median 1.72E-04 1.54E-01 1.05E-03 1.44E-03 1.10E-01 4.10E-05 6.17E-05 3.70E-02 2.41E-02 1.61E-04 
Mean 2.01E-04 1.60E-01 1.17E-03 2.86E-03 1.26E-01 5.58E-05 8.56E-05 5.78E-02 2.65E-02 2.53E-04 
Worst 6.10E-04 3.13E-01 2.73E-03 1.69E-02 3.38E-01 1.93E-04 5.14E-04 2.32E-01 5.89E-02 1.24E-03 
STD 2.83E-08 3.40E-03 3.32E-07 1.16E-05 3.27E-03 2.46E-09 9.68E-09 2.49E-03 1.31E-04 7.97E-08 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 Results of  multimodal benchmark functions (different algorithms) 



 

Table 7 Results of  fixed-dimension multimodal benchmark functions (different algorithms) 

 Item ECO ALO GWO WOA SSA AOA HHO SCA MVO ROA 

F14 

Best 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 
Median 9.98E-01 1.99E+00 2.98E+00 1.50E+00 9.98E-01 1.12E+01 9.98E-01 9.99E-01 9.98E-01 9.98E-01 
Mean 1.03E+00 1.96E+00 3.35E+00 2.83E+00 1.30E+00 9.03E+00 1.13E+00 1.66E+00 9.98E-01 1.06E+00 
Worst 1.99E+00 6.90E+00 1.27E+01 1.08E+01 3.97E+00 1.27E+01 1.99E+00 2.98E+00 9.98E-01 2.98E+00 
STD 3.18E-02 1.85E+00 1.17E+01 8.71E+00 5.34E-01 1.63E+01 1.14E-01 8.74E-01 1.52E-21 1.27E-01 

F15 

Best 3.07E-04 3.08E-04 3.08E-04 3.15E-04 4.21E-04 3.56E-04 3.08E-04 3.46E-04 5.68E-04 3.08E-04 
Median 7.62E-04 8.24E-04 3.29E-04 6.47E-04 7.85E-04 2.82E-03 3.31E-04 7.87E-04 7.69E-04 3.45E-04 
Mean 1.40E-03 1.51E-03 2.38E-03 7.52E-04 3.46E-03 9.13E-03 3.38E-04 9.91E-04 4.48E-03 5.52E-04 
Worst 2.04E-02 2.04E-02 2.04E-02 1.86E-03 2.04E-02 3.56E-02 4.01E-04 1.84E-03 2.04E-02 1.69E-03 
STD 1.26E-05 1.23E-05 3.60E-05 2.17E-07 4.40E-05 1.19E-04 7.82E-10 1.48E-07 5.32E-05 1.59E-07 

F16 

Best -
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

Median -
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

Mean -
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

Worst -
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

-
1.03E+00 

STD 2.71E-19 2.90E-26 2.21E-16 1.26E-19 8.64E-28 1.30E-14 5.07E-21 1.33E-09 6.63E-14 9.84E-10 

F17 

Best 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 
Median 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 4.07E-01 3.98E-01 3.99E-01 3.98E-01 3.98E-01 
Mean 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 4.09E-01 3.98E-01 4.00E-01 3.98E-01 3.98E-01 
Worst 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 4.29E-01 3.98E-01 4.09E-01 3.98E-01 4.01E-01 
STD 2.95E-17 6.05E-27 1.62E-11 9.36E-12 5.14E-28 7.57E-05 4.80E-11 7.45E-06 2.28E-13 4.78E-07 

F18 

Best 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 
Median 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 
Mean 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 5.70E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 
Worst 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+01 3.00E+00 3.00E+00 3.00E+00 3.00E+00 
STD 1.91E-29 1.49E-25 3.71E-10 5.29E-10 7.70E-26 6.56E+01 6.63E-13 9.63E-09 5.22E-12 9.44E-08 

F19 

Best -
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.86E+00 

Median -
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.85E+00 

-
3.86E+00 

-
3.85E+00 

-
3.86E+00 

-
3.84E+00 

Mean -
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.85E+00 

-
3.86E+00 

-
3.86E+00 

-
3.86E+00 

-
3.79E+00 

Worst -
3.86E+00 

-
3.86E+00 

-
3.85E+00 

-
3.83E+00 

-
3.86E+00 

-
3.84E+00 

-
3.85E+00 

-
3.85E+00 

-
3.86E+00 

-
3.61E+00 

STD 6.80E-30 1.01E-26 5.77E-06 3.33E-05 2.47E-25 1.06E-05 1.24E-05 8.33E-06 1.15E-12 8.39E-03 

F20 

Best -
3.32E+00 

-
3.32E+00 

-
3.32E+00 

-
3.32E+00 

-
3.32E+00 

-
3.19E+00 

-
3.32E+00 

-
3.17E+00 

-
3.32E+00 

-
3.25E+00 

Median -
3.32E+00 

-
3.20E+00 

-
3.26E+00 

-
3.32E+00 

-
3.20E+00 

-
3.08E+00 

-
3.17E+00 

-
3.01E+00 

-
3.20E+00 

-
2.91E+00 

Mean -
3.27E+00 

-
3.26E+00 

-
3.25E+00 

-
3.25E+00 

-
3.22E+00 

-
3.05E+00 

-
3.15E+00 

-
2.93E+00 

-
3.24E+00 

-
2.81E+00 

Worst -
3.20E+00 

-
3.20E+00 

-
3.09E+00 

-
3.05E+00 

-
3.18E+00 

-
2.83E+00 

-
2.88E+00 

-
1.45E+00 

-
3.20E+00 

-
1.17E+00 

STD 3.52E-03 3.53E-03 6.26E-03 8.35E-03 2.30E-03 8.34E-03 1.13E-02 1.20E-01 3.03E-03 1.50E-01 

F21 

Best -
1.02E+01 

-
1.02E+01 

-
1.02E+01 

-
1.02E+01 

-
1.02E+01 

-
6.78E+00 

-
5.06E+00 

-
4.88E+00 

-
1.02E+01 

-
1.02E+01 

Median -
1.02E+01 

-
5.06E+00 

-
1.02E+01 

-
1.01E+01 

-
1.02E+01 

-
3.60E+00 

-
5.05E+00 

-8.81E-01 -
7.63E+00 

-
1.02E+01 

Mean -
9.98E+00 

-
6.44E+00 

-
9.31E+00 

-
8.37E+00 

-
7.23E+00 

-
3.75E+00 

-
5.05E+00 

-
2.08E+00 

-
7.54E+00 

-
1.02E+01 

Worst -
5.06E+00 

-
2.63E+00 

-
5.06E+00 

-
2.63E+00 

-
2.63E+00 

-
2.14E+00 

-
5.05E+00 

-4.97E-01 -
2.63E+00 

-
1.01E+01 

STD 8.37E-01 7.50E+00 3.57E+00 6.50E+00 1.05E+01 1.30E+00 4.88E-06 2.96E+00 7.03E+00 5.09E-06 

F22 
Best -

1.04E+01 
-
1.04E+01 

-
1.04E+01 

-
1.04E+01 

-
1.04E+01 

-
7.24E+00 

-
1.03E+01 

-
8.29E+00 

-
1.04E+01 

-
1.04E+01 

 Item ECO ALO GWO WOA SSA AOA HHO SCA MVO ROA 

F8 

Best -
1.24E+04 

-
6.53E+03 

-
7.44E+03 

-
1.26E+04 

-
9.81E+03 

-
5.92E+03 

-
1.26E+04 

-
4.78E+03 

-
8.88E+03 

-
1.26E+04 

Median -
1.16E+04 

-
5.51E+03 

-
5.83E+03 

-
1.11E+04 

-
7.77E+03 

-
5.37E+03 

-
1.26E+04 

-
3.73E+03 

-
7.93E+03 

-
1.26E+04 

Mean -
1.14E+04 

-
5.52E+03 

-
5.89E+03 

-
1.06E+04 

-
7.70E+03 

-
5.26E+03 

-
1.25E+04 

-
3.80E+03 

-
7.78E+03 

-
1.26E+04 

Worst -
8.68E+03 

-
5.42E+03 

-
3.46E+03 

-
6.83E+03 

-
5.98E+03 

-
4.45E+03 

-
1.21E+04 

-
3.32E+03 

-
6.55E+03 

-
1.26E+04 

STD 9.98E+05 3.96E+04 8.11E+05 3.22E+06 6.12E+05 1.66E+05 7.75E+03 1.04E+05 4.35E+05 2.11E-05 

F9 

Best 0.00E+00 4.38E+01 0.00E+00 0.00E+00 2.39E+01 0.00E+00 0.00E+00 8.79E-03 7.02E+01 0.00E+00 
Median 0.00E+00 7.81E+01 5.02E-01 0.00E+00 4.78E+01 0.00E+00 0.00E+00 3.47E+01 1.14E+02 0.00E+00 
Mean 0.00E+00 7.77E+01 2.74E+00 0.00E+00 5.06E+01 0.00E+00 0.00E+00 4.42E+01 1.20E+02 3.73E-13 
Worst 0.00E+00 1.53E+02 1.61E+01 0.00E+00 9.25E+01 0.00E+00 0.00E+00 1.32E+02 1.99E+02 1.07E-11 
STD 0.00E+00 5.44E+02 1.45E+01 0.00E+00 3.07E+02 0.00E+00 0.00E+00 1.33E+03 8.67E+02 3.71E-24 

F10 

Best 8.88E-16 1.16E+00 3.95E-14 4.44E-16 1.16E+00 4.44E-16 4.44E-16 2.03E-02 5.25E-01 4.44E-16 
Median 8.88E-16 3.09E+00 5.55E-14 4.00E-15 2.50E+00 4.44E-16 4.44E-16 1.97E+01 1.50E+00 1.57E-11 
Mean 8.88E-16 3.92E+00 5.56E-14 4.47E-15 2.40E+00 4.44E-16 4.44E-16 1.21E+01 1.52E+00 1.13E-09 
Worst 8.88E-16 1.25E+01 6.44E-14 7.55E-15 3.98E+00 4.44E-16 4.44E-16 2.04E+01 2.64E+00 2.03E-08 
STD 0.00E+00 7.83E+00 4.10E-29 6.51E-30 6.19E-01 0.00E+00 0.00E+00 8.63E+01 2.52E-01 1.43E-17 

F11 

Best 0.00E+00 8.45E-03 0.00E+00 0.00E+00 4.53E-05 7.42E-03 0.00E+00 4.74E-01 6.55E-01 0.00E+00 
Median 0.00E+00 3.53E-02 0.00E+00 0.00E+00 8.41E-03 1.18E-01 0.00E+00 9.07E-01 8.44E-01 0.00E+00 
Mean 0.00E+00 3.98E-02 2.17E-03 8.09E-03 1.00E-02 1.31E-01 0.00E+00 9.40E-01 8.11E-01 1.19E-13 
Worst 0.00E+00 8.93E-02 1.71E-02 1.57E-01 3.72E-02 3.93E-01 0.00E+00 2.50E+00 9.44E-01 2.14E-12 
STD 0.00E+00 5.08E-04 2.48E-05 1.00E-03 9.32E-05 8.69E-03 0.00E+00 1.50E-01 5.27E-03 1.74E-25 

F12 

Best 3.71E-06 6.39E+00 6.68E-03 2.57E-03 1.75E+00 3.48E-01 5.78E-08 1.20E+00 3.88E-01 1.59E-09 
Median 4.07E-05 9.52E+00 2.68E-02 8.30E-03 6.29E+00 4.63E-01 2.03E-06 1.12E+01 1.99E+00 1.71E-05 
Mean 6.02E-05 1.09E+01 3.23E-02 1.38E-02 6.42E+00 4.58E-01 4.73E-06 1.70E+05 2.15E+00 3.04E-05 
Worst 3.89E-04 2.29E+01 9.12E-02 9.77E-02 1.38E+01 5.58E-01 2.12E-05 4.85E+06 5.30E+00 1.83E-04 
STD 5.04E-09 2.03E+01 2.83E-04 3.10E-04 6.38E+00 2.14E-03 3.66E-11 7.58E+11 1.61E+00 1.68E-09 

F13 

Best 8.81E-05 1.14E-02 9.83E-02 5.18E-02 6.91E-05 2.57E+00 1.92E-07 2.45E+00 3.86E-02 4.30E-06 
Median 1.16E-02 5.09E+00 5.14E-01 2.78E-01 1.11E+00 2.83E+00 5.37E-05 9.98E+01 1.23E-01 7.23E-04 
Mean 1.10E-01 1.35E+01 5.14E-01 3.15E-01 1.00E+01 2.82E+00 8.22E-05 5.61E+04 1.44E-01 1.97E-03 
Worst 2.66E+00 6.22E+01 9.17E-01 7.31E-01 4.38E+01 2.99E+00 5.33E-04 6.92E+05 3.31E-01 1.29E-02 
STD 2.29E-01 2.62E+02 3.88E-02 3.09E-02 1.48E+02 1.02E-02 1.13E-08 2.79E+10 4.83E-03 1.11E-05 



Median -
1.04E+01 

-
5.11E+00 

-
1.04E+01 

-
7.73E+00 

-
1.04E+01 

-
4.04E+00 

-
5.09E+00 

-
3.24E+00 

-
1.04E+01 

-
1.04E+01 

Mean -
9.38E+00 

-
6.35E+00 

-
1.02E+01 

-
7.57E+00 

-
8.12E+00 

-
4.43E+00 

-
5.26E+00 

-
3.29E+00 

-
8.41E+00 

-
1.04E+01 

Worst -
2.77E+00 

-
2.77E+00 

-
5.13E+00 

-
2.77E+00 

-
2.75E+00 

-
1.85E+00 

-
5.08E+00 

-9.06E-01 -
2.77E+00 

-
1.04E+01 

STD 6.74E+00 1.02E+01 8.96E-01 8.22E+00 1.08E+01 1.93E+00 8.81E-01 3.83E+00 8.36E+00 9.33E-06 

F23 

Best -
1.05E+01 

-
1.05E+01 

-
1.05E+01 

-
1.05E+01 

-
1.05E+01 

-
7.27E+00 

-
1.05E+01 

-
7.86E+00 

-
1.05E+01 

-
1.05E+01 

Median -
1.05E+01 

-
1.05E+01 

-
1.05E+01 

-
7.45E+00 

-
1.05E+01 

-
3.67E+00 

-
5.13E+00 

-
4.35E+00 

-
1.05E+01 

-
1.05E+01 

Mean -
1.03E+01 

-
7.32E+00 

-
9.99E+00 

-
7.23E+00 

-
8.16E+00 

-
3.67E+00 

-
5.47E+00 

-
4.13E+00 

-
9.39E+00 

-
1.05E+01 

Worst -
3.84E+00 

-
2.43E+00 

-
2.42E+00 

-
2.42E+00 

-
2.42E+00 

-
1.77E+00 

-
5.11E+00 

-9.41E-01 -
2.43E+00 

-
1.05E+01 

STD 1.45E+00 1.23E+01 4.10E+00 1.11E+01 1.16E+01 1.25E+00 1.67E+00 3.51E+00 6.80E+00 5.85E-05 

 

Tables 5 through 7 offer a comprehensive comparison of  the search results achieved by ECO and nine popular 

optimization algorithms across F1 through F23, employing five evaluation metrics. The average convergence curves of  the 

ten algorithms are depicted in Fig. 7. 

The results reveal that ECO outperforms the other algorithms across most of  the tested functions and consistently 

ranks highly across various test functions. Moreover, ECO demonstrates superior convergence abilities in the majority of  

the test functions. Therefore, ECO emerges as a comprehensive optimization algorithm with robust search capabilities. 

Notably, in functions F9 through F12, F16, F17, F18, F19, and F20, ECO showcases exceptional search capability and 

rapid convergence, enabling it to swiftly identify optimal or near-optimal solutions. 

Table 8 Rank of  classical benchmark functions 
 

ECO ALO GWO WOA SSA AOA HHO SCA MVO ROA 

F1  3 8 4 2 7 5 1 10 9 6 
F2  4 10 5 2 8 1 3 7 9 6 
F3  2 8 4 10 7 5 1 9 6 3 
F4  2 8 4 10 7 5 1 9 6 3 
F5  4 8 3 5 7 6 1 10 9 2 
F6  4 3 7 6 1 9 2 10 8 5 
F7  3 10 5 6 9 1 2 8 7 4 
F8  3 8 7 4 6 9 2 10 5 1 
F9  1 9 6 1 8 1 1 7 10 5 
F10  3 9 5 4 8 1 1 10 7 6 
F11  3 9 5 4 8 6 1 10 7 2 
F12  1 7 4 5 6 8 1 10 9 3 
F13  3 9 6 5 8 7 1 10 4 2 
F14  2 7 9 8 5 10 4 6 1 3 
F15  5 6 7 3 8 10 1 4 9 2 
F16  1 1 1 1 1 1 1 1 1 1 
F17  1 1 1 1 1 10 1 9 1 8 
F18  1 1 6 6 1 10 1 8 1 9 
F19  1 1 5 7 1 9 6 8 1 10 
F20  1 2 4 3 6 8 7 9 5 10 
F21  2 7 3 4 6 9 8 10 5 1 
F22  3 7 2 6 5 9 8 10 4 1 
F23  2 6 3 7 5 10 8 9 4 1 

Average Rank 2.39  6.30  4.61  4.78  5.61  6.52  2.74  8.43  5.57  4.09  
Final Ranking 1  8 4  5 6  9 2  10  7  3  

 

The performance evaluation of  the ECO algorithm and nine existing frontier algorithms on F1 through F23 is 

presented in Table 8. It's worth noting that when ranking these ten algorithms, the criteria are prioritized in the order of  

mean and variance. 

The results showcase that the ECO algorithm outperforms the other nine optimization algorithms, securing a 

significant lead with an impressive average ranking of  2.39. This remarkable performance reaffirms the superiority of  the 

ECO algorithm in solving the optimization problems under consideration. 

This thorough evaluation highlights the effectiveness and competitiveness of  the ECO algorithm when compared to 

other peers. It confirms the robust performance of  ECO across diverse function types and underscores its suitability for 

tackling complex optimization problems. 

3.3 Comparison of  different algorithms on CEC2021 test functions 

To deepen our assessment of  the effectiveness of  the proposed ECO algorithm and scrutinize its ability to explore, 



exploit, and avoid local optima, we subjected it to one of  the most rigorous benchmarks available: the CEC2021 test function 

suite. We compared the performance of  ECO with the nine well-known optimization algorithms mentioned above. All 

algorithms underwent independent runs 30 times with 500 iterations and a population size of  40. 

Tables 9 through 14 document the search results as well as the ranking of  the ten search algorithms for dimensions 

(dim) 2, 10, and 20, respectively. It's important to note that when ranking these ten algorithms, the criteria are prioritized in 

the order of  mean and variance. 

Table 9 Results of  CEC2021 benchmark functions (dim=2) 
 Item ECO ALO GWO WOA SSA AOA HHO SCA MVO ROA 

F1 

Best 0.00E+00 5.07E-09 2.44E-289 2.94E-150 3.18E-02 0.00E+00 3.45E-128 2.58E-88 1.39E-04 3.02E-32 
Median 0.00E+00 7.58E-06 5.87E-253 4.29E-137 3.76E+01 0.00E+00 3.09E-113 6.95E-73 4.86E-02 4.97E-15 
Mean 0.00E+00 2.69E+02 2.57E-236 1.20E-121 2.91E+02 0.00E+00 1.86E-104 6.15E-70 9.63E-02 7.56E-11 
Worst 0.00E+00 5.55E+03 7.48E-235 3.60E-120 2.11E+03 0.00E+00 5.57E-103 1.48E-68 5.52E-01 1.87E-09 
STD 0.00E+00 1.02E+06 0.00E+00 4.18E-241 2.73E+05 0.00E+00 9.99E-207 7.13E-138 1.43E-02 1.13E-19 

F2 

Best 0.00E+00 4.55E-12 0.00E+00 0.00E+00 1.93E-12 0.00E+00 0.00E+00 0.00E+00 4.25E-07 0.00E+00 
Median 0.00E+00 3.12E-01 0.00E+00 0.00E+00 3.12E-01 0.00E+00 0.00E+00 0.00E+00 3.44E-04 0.00E+00 
Mean 0.00E+00 3.64E+00 8.33E-02 0.00E+00 7.67E-01 0.00E+00 0.00E+00 0.00E+00 1.07E+01 6.94E-12 
Worst 0.00E+00 1.71E+01 6.24E-01 0.00E+00 1.71E+01 0.00E+00 0.00E+00 0.00E+00 1.18E+02 1.58E-10 
STD 0.00E+00 4.44E+01 4.51E-02 0.00E+00 9.21E+00 0.00E+00 0.00E+00 0.00E+00 8.68E+02 8.49E-22 

F3 

Best 0.00E+00 8.32E-13 0.00E+00 0.00E+00 4.49E-13 0.00E+00 0.00E+00 0.00E+00 1.33E-05 0.00E+00 
Median 0.00E+00 2.04E+00 2.04E+00 0.00E+00 2.28E-11 0.00E+00 0.00E+00 0.00E+00 2.04E+00 1.20E-23 
Mean 0.00E+00 1.18E+00 1.42E+00 6.57E-33 8.66E-01 0.00E+00 0.00E+00 1.93E-01 1.56E+00 3.69E-14 
Worst 0.00E+00 2.34E+00 2.13E+00 1.97E-31 2.34E+00 0.00E+00 0.00E+00 2.50E+00 2.04E+00 5.49E-13 
STD 0.00E+00 1.07E+00 8.76E-01 1.25E-63 1.13E+00 0.00E+00 0.00E+00 3.89E-01 7.43E-01 1.87E-26 

F4 

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.13E-14 0.00E+00 
Median 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.70E-10 0.00E+00 
Mean 0.00E+00 6.58E-03 2.30E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.32E-03 0.00E+00 
Worst 0.00E+00 4.93E-02 1.97E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.98E-02 0.00E+00 
STD 0.00E+00 1.84E-04 3.69E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.44E-05 0.00E+00 

F5 

Best NA NA NA NA NA NA NA NA NA NA 
Median NA NA NA NA NA NA NA NA NA NA 
Mean NA NA NA NA NA NA NA NA NA NA 
Worst NA NA NA NA NA NA NA NA NA NA 
STD NA NA NA NA NA NA NA NA NA NA 

F6 

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.53E-10 0.00E+00 
Median 0.00E+00 6.69E-15 0.00E+00 0.00E+00 2.22E-16 0.00E+00 0.00E+00 0.00E+00 8.92E-09 0.00E+00 
Mean 0.00E+00 3.89E-14 0.00E+00 0.00E+00 6.03E-16 0.00E+00 0.00E+00 0.00E+00 4.97E-08 4.11E-15 
Worst 0.00E+00 2.23E-13 0.00E+00 0.00E+00 2.78E-15 0.00E+00 0.00E+00 0.00E+00 5.37E-07 1.23E-13 
STD 0.00E+00 4.40E-27 0.00E+00 0.00E+00 5.01E-31 0.00E+00 0.00E+00 0.00E+00 1.25E-14 4.84E-28 

F7 

Best NA NA NA NA NA NA NA NA NA NA 
Median NA NA NA NA NA NA NA NA NA NA 
Mean NA NA NA NA NA NA NA NA NA NA 
Worst NA NA NA NA NA NA NA NA NA NA 
STD NA NA NA NA NA NA NA NA NA NA 

F8 

Best 0.00E+00 1.41E-11 0.00E+00 0.00E+00 2.37E-12 0.00E+00 0.00E+00 0.00E+00 3.76E-05 0.00E+00 
Median 0.00E+00 2.71E-10 0.00E+00 0.00E+00 3.95E-11 0.00E+00 0.00E+00 0.00E+00 6.92E-04 7.40E-15 
Mean 0.00E+00 7.50E-01 0.00E+00 1.23E-17 7.17E-11 0.00E+00 0.00E+00 0.00E+00 7.93E-04 3.00E-11 
Worst 0.00E+00 1.12E+01 0.00E+00 3.70E-16 5.59E-10 0.00E+00 0.00E+00 0.00E+00 2.39E-03 8.98E-10 
STD 0.00E+00 7.87E+00 0.00E+00 4.41E-33 1.13E-20 0.00E+00 0.00E+00 0.00E+00 3.19E-07 2.60E-20 

F9 

Best 0.00E+00 2.12E-06 1.01E-286 5.07E-154 3.15E-07 0.00E+00 4.17E-139 1.37E-86 4.00E-03 8.88E-15 
Median 0.00E+00 1.27E-05 2.43E-255 6.46E-132 7.70E-06 0.00E+00 1.90E-119 4.66E-80 2.86E-02 5.40E-10 
Mean 0.00E+00 1.40E-05 1.55E-236 3.26E-15 7.29E-06 0.00E+00 1.17E-115 1.75E-75 2.89E-02 8.25E-06 
Worst 0.00E+00 2.98E-05 4.65E-235 8.88E-15 1.44E-05 0.00E+00 2.84E-114 3.83E-74 6.08E-02 2.43E-04 
STD 0.00E+00 4.74E-11 0.00E+00 1.83E-29 1.79E-11 0.00E+00 2.68E-229 4.98E-149 2.18E-04 1.90E-09 

F1
0 

Best 0.00E+00 1.33E-03 1.26E-04 2.44E-04 7.62E-04 0.00E+00 5.66E-128 4.55E-05 1.99E-02 3.09E-40 
Median 0.00E+00 2.74E-03 4.80E-04 3.61E-03 2.20E-03 0.00E+00 2.34E-07 4.52E-04 5.50E-02 3.30E-04 
Mean 0.00E+00 3.07E-03 5.74E-04 5.36E-03 2.22E-03 0.00E+00 4.78E-05 6.89E-04 5.48E-02 5.31E-04 
Worst 0.00E+00 5.90E-03 1.35E-03 1.93E-02 4.63E-03 0.00E+00 3.49E-04 2.92E-03 1.09E-01 2.11E-03 
STD 0.00E+00 1.61E-06 1.12E-07 2.72E-05 6.88E-07 0.00E+00 8.74E-09 4.11E-07 2.85E-04 3.18E-07 

 

Table 10 Rank of  CEC2021 benchmark functions (dim=2) 
 

ECO ALO GWO WOA SSA AOA HHO SCA MVO ROA 

F1 1 9 3 4 10 1 5 6 8 7 

F2 1 9 7 1 8 1 1 1 10 6 

F3 1 8 9 4 7 1 1 6 10 5 

F4 1 10 9 1 1 1 1 1 8 1 

F5 NA NA NA NA NA NA NA NA NA NA 

F6 1 9 3 4 10 1 5 6 8 7 

F7 NA NA NA NA NA NA NA NA NA NA 

F8 1 10 1 6 8 1 1 1 9 7 

F9 1 9 3 6 7 1 4 5 10 8 

F10 1 8 5 9 7 1 3 6 10 4 

Average Rank 1 9 5 4.375 7.25 1 2.625 4 9.125 5.625 

Final Ranking 1 9 6 5 8 1 3 4 10 7 

 

Table 11 Results of  CEC2021 benchmark functions (dim=10) 
 Item ECO ALO GWO WOA SSA AOA HHO SCA MVO ROA 

F1 

Best 0.00E+00 2.46E-03 1.21E-

62 

6.14E-87 4.49E+00 0.00E+00 4.40E-

114 

2.13E-

12 

4.12E+03 1.69E-

20 

Medi

an 

0.00E+00 9.09E+02 5.87E-

60 

2.48E-82 5.64E+02 0.00E+00 1.59E-

101 

1.14E-

09 

1.25E+04 2.79E-

16 

Mean 0.00E+00 1.70E+03 1.08E-

57 

4.87E-78 1.49E+03 0.00E+00 3.25E-92 2.16E-

08 

1.37E+04 1.68E-

09 

Worst 0.00E+00 9.83E+03 2.08E-

56 

3.97E-77 5.97E+03 0.00E+00 9.58E-91 4.74E-

07 

3.17E+04 2.99E-

08 

STD 0.00E+00 5.31E+06 1.42E-

113 

1.27E-154 2.85E+06 0.00E+00 2.95E-

182 

7.28E-

15 

4.76E+07 3.69E-

17 

F2 
Best 0.00E+00 4.45E+02 0.00E+0

0 

0.00E+00 7.02E+00 0.00E+00 0.00E+0

0 

0.00E+0

0 

3.94E+00 0.00E+0

0 



Medi

an 

0.00E+00 9.38E+02 7.30E-

02 

0.00E+00 5.34E+02 0.00E+00 0.00E+0

0 

3.96E-

09 

5.63E+02 0.00E+0

0 

Mean 0.00E+00 1.01E+03 5.58E+0

0 

1.08E+02 5.70E+02 0.00E+00 0.00E+0

0 

4.37E+0

1 

5.17E+02 1.50E-

11 

Worst 0.00E+00 1.69E+03 1.03E+0

2 

1.48E+03 1.40E+03 0.00E+00 0.00E+0

0 

5.51E+0

2 

9.81E+02 2.82E-

10 

STD 0.00E+00 1.04E+05 3.46E+0

2 

1.17E+05 1.08E+05 0.00E+00 0.00E+0

0 

1.72E+0

4 

5.10E+04 2.88E-

21 

F3 

Best 0.00E+00 1.69E+01 0.00E+0

0 

0.00E+00 9.95E+00 0.00E+00 0.00E+0

0 

3.57E-

14 

9.15E+00 1.77E-

30 

Medi

an 

0.00E+00 3.42E+01 3.53E+0

1 

0.00E+00 3.08E+01 0.00E+00 0.00E+0

0 

2.35E-

07 

2.60E+01 3.18E-

22 

Mean 0.00E+00 3.79E+01 3.35E+0

1 

6.57E-33 3.25E+01 0.00E+00 0.00E+0

0 

1.04E+0

1 

2.60E+01 3.57E-

15 

Worst 0.00E+00 9.55E+01 5.93E+0

1 

1.97E-31 7.86E+01 0.00E+00 0.00E+0

0 

9.68E+0

1 

4.18E+01 8.92E-

14 

STD 0.00E+00 2.82E+02 3.09E+0

2 

1.25E-63 2.81E+02 0.00E+00 0.00E+0

0 

6.85E+0

2 

7.23E+01 2.63E-

28 

F4 

Best 0.00E+00 4.14E-01 0.00E+00 0.00E+

00 

3.46E-01 0.00E+00 0.00E+0

0 

0.00E+00 6.08E-01 0.00E+0

0 

Medi

an 

0.00E+00 1.30E+00 2.15E-01 0.00E+

00 

1.27E+00 0.00E+00 0.00E+0

0 

1.00E-08 1.39E+00 0.00E+0

0 

Mean 0.00E+00 1.47E+00 4.66E-01 1.22E-

01 

1.54E+00 0.00E+00 0.00E+0

0 

1.01E+00 1.43E+00 0.00E+0

0 

Worst 0.00E+00 4.40E+00 1.87E+00 1.59E+

00 

3.37E+00 0.00E+00 0.00E+0

0 

6.60E+00 2.42E+00 0.00E+0

0 

STD 0.00E+00 5.98E-01 3.21E-01 1.15E-

01 

7.11E-01 0.00E+00 0.00E+0

0 

3.07E+00 2.68E-01 0.00E+0

0 

F5 

Best 0.00E+00 8.79E+02 4.35E-25 8.14E-

81 

7.17E+02 0.00E+00 3.75E-

110 

2.09E-16 2.59E+02 1.79E-

18 

Medi

an 

0.00E+00 7.68E+03 1.27E-22 5.28E-

23 

6.49E+03 0.00E+00 2.15E-89 4.40E-12 8.79E+02 2.33E-

13 

Mean 0.00E+00 1.65E+04 2.91E-01 1.42E-

16 

8.29E+03 0.00E+00 3.02E-74 2.22E-01 9.10E+02 1.57E-

10 

Worst 0.00E+00 8.99E+04 2.64E+00 2.82E-

15 

2.95E+04 0.00E+00 9.07E-73 6.49E+00 1.92E+03 4.41E-

09 

STD 0.00E+00 4.05E+08 5.21E-01 2.80E-

31 

5.68E+07 0.00E+00 2.65E-

146 

1.36E+00 8.47E+04 6.26E-

19 

F6 

Best 0.00E+00 5.72E+00 2.03E-02 1.36E-

09 

2.56E+00 0.00E+00 0.00E+0

0 

7.89E-04 2.32E+00 2.98E-

08 

Medi

an 

0.00E+00 2.52E+01 1.20E-01 7.31E-

02 

1.58E+01 0.00E+00 1.49E-12 1.05E-01 1.61E+01 2.67E-

05 

Mean 0.00E+00 3.94E+01 1.03E+00 1.63E+

01 

2.98E+01 0.00E+00 8.49E-06 2.84E+00 3.76E+01 4.95E-

05 

Worst 0.00E+00 1.59E+02 1.79E+01 2.93E+

02 

2.43E+02 0.00E+00 1.39E-04 6.62E+01 1.45E+02 2.35E-

04 

STD 0.00E+00 1.77E+03 1.02E+01 3.73E+

03 

2.17E+03 0.00E+00 6.59E-10 1.43E+02 2.37E+03 3.91E-

09 

F7 

Best 0.00E+00 8.34E+02 5.67E-03 5.24E-04 6.73E+02 0.00E+00 8.91E-114 6.78E-04 2.72E+01 4.22E-08 

Medi

an 

0.00E+00 3.19E+03 3.34E-02 1.19E-02 2.85E+03 0.00E+00 1.93E-13 3.05E-02 2.55E+02 4.02E-06 

Mean 0.00E+00 4.01E+03 2.92E-01 4.22E-02 2.96E+03 0.00E+00 7.78E-07 1.52E-01 2.48E+02 3.70E-05 

Worst 0.00E+00 1.18E+04 2.56E+00 2.84E-01 1.02E+04 0.00E+00 1.60E-05 2.76E+00 5.23E+02 4.34E-04 

STD 0.00E+00 8.85E+06 3.63E-01 4.12E-03 4.34E+06 0.00E+00 8.80E-12 2.42E-01 2.13E+04 6.82E-09 

F8 

Best 0.00E+00 4.33E+01 0.00E+00 0.00E+00 4.21E+01 0.00E+00 0.00E+00 1.48E-14 2.17E+01 0.00E+00 

Medi

an 

0.00E+00 4.12E+02 0.00E+00 0.00E+00 1.97E+02 0.00E+00 0.00E+00 4.42E-12 9.09E+01 5.55E-16 

Mean 0.00E+00 4.24E+02 0.00E+00 0.00E+00 2.35E+02 0.00E+00 0.00E+00 2.37E-08 2.31E+02 2.04E-11 

Worst 0.00E+00 9.62E+02 0.00E+00 0.00E+00 6.34E+02 0.00E+00 0.00E+00 5.22E-07 1.07E+03 5.28E-10 

STD 0.00E+00 6.05E+04 0.00E+00 0.00E+00 2.24E+04 0.00E+00 0.00E+00 9.11E-15 7.87E+04 8.99E-21 

F9 

Best 0.00E+00 1.41E-04 8.88E-15 2.42E-95 5.36E-05 0.00E+00 1.67E-122 2.96E-10 3.17E-01 1.78E-14 

Medi

an 

0.00E+00 4.67E+00 8.88E-15 8.88E-15 8.77E-05 0.00E+00 1.41E-111 5.23E-08 7.13E-01 1.70E-09 

Mean 0.00E+00 1.25E+01 1.15E-14 9.47E-15 1.48E+00 0.00E+00 2.98E-103 3.26E-07 1.73E+00 1.24E-06 

Worst 0.00E+00 6.79E+01 1.78E-14 1.78E-14 6.95E+00 0.00E+00 8.37E-102 4.13E-06 6.08E+00 1.78E-05 

STD 0.00E+00 5.08E+02 1.66E-29 2.59E-29 6.44E+00 0.00E+00 2.26E-204 6.00E-13 3.13E+00 1.39E-11 

F1

0 

Best 0.00E+00 4.82E+01 4.03E-

03 

1.76E-

02 

4.85E+01 0.00E+

00 

6.58E-114 4.73E-03 4.84E+01 1.58E-04 

Medi

an 

0.00E+00 4.97E+01 4.96E+0

1 

5.59E-

02 

5.07E+01 0.00E+

00 

1.52E-06 6.10E+01 4.91E+01 9.45E-04 

Mean 0.00E+00 5.24E+01 5.10E+0

1 

6.33E-

02 

5.91E+01 0.00E+

00 

2.28E-04 4.65E+01 5.21E+01 1.29E-03 

Worst 0.00E+00 8.32E+01 7.82E+0

1 

1.42E-

01 

1.09E+02 0.00E+

00 

3.55E-03 8.54E+01 8.00E+01 3.52E-03 

STD 0.00E+00 7.02E+01 1.56E+0

2 

1.15E-

03 

2.46E+02 0.00E+

00 

5.55E-07 1.14E+03 8.51E+01 9.73E-07 

 

Table 12 Rank of  CEC2021 benchmark functions (dim=10) 
 

ECO ALO GWO WOA SSA AOA HHO SCA MVO ROA 

F1 1 9 5 4 8 1 3 7 10 6 

F2 1 10 5 7 9 1 1 6 8 4 

F3 1 10 9 4 8 1 1 6 7 5 

F4 1 9 6 5 10 1 1 7 8 1 

F5 1 10 7 4 9 1 3 6 8 5 

F6 1 9 5 4 8 1 3 7 10 6 

F7 1 10 7 5 9 1 3 6 8 4 

F8 1 10 1 1 9 1 1 7 8 6 

F9 1 10 5 4 8 1 3 6 9 7 

F10 1 9 7 5 10 1 3 6 8 4 

Average Rank 1 9.6 5.7 4.3 8.8 1 2.2 6.4 8.4 4.8 

Final Ranking 1 10 6 4 9 1 3 7 8 5 

 

Table 13 Results of  CEC2021 benchmark functions (dim=20) 
 Item ECO ALO GWO WOA SSA AOA HHO SCA MVO ROA 

F1 
Best 0.00E+00 5.94E+00 2.99E-

37 

1.94E-86 2.09E-01 0.00E+00 5.75E-108 3.51E-01 7.58E+04 1.03E-27 



Media

n 

0.00E+00 1.04E+03 6.71E-

35 

1.78E-79 3.46E+02 4.93E-260 1.11E-101 1.50E+02 1.37E+05 3.43E-14 

Mean 0.00E+00 1.44E+03 2.40E-

34 

6.79E-73 8.26E+02 1.76E-83 1.54E-94 2.91E+03 1.51E+05 1.62E-07 

Worst 0.00E+00 4.87E+03 2.57E-

33 

2.03E-71 4.80E+03 5.27E-82 4.58E-93 7.25E+04 2.62E+05 4.84E-06 

STD 0.00E+00 1.84E+06 2.86E-

67 

1.33E-143 1.22E+06 8.96E-165 6.77E-187 1.68E+08 2.27E+09 7.56E-13 

F2 

Best 0.00E+00 1.37E+03 0.00E+0

0 

0.00E+00 2.18E+02 0.00E+00 0.00E+00 4.41E-02 1.34E+03 0.00E+00 

Media

n 

0.00E+00 2.36E+03 5.46E+0

0 

0.00E+00 1.73E+03 0.00E+00 0.00E+00 1.25E+02 1.86E+03 0.00E+00 

Mean 0.00E+00 2.29E+03 9.10E+0

0 

1.60E+02 1.72E+03 0.00E+00 0.00E+00 4.78E+02 2.05E+03 3.50E-11 

Worst 0.00E+00 3.46E+03 3.04E+0

1 

2.30E+03 2.95E+03 0.00E+00 0.00E+00 2.87E+03 3.07E+03 7.77E-10 

STD 0.00E+00 3.67E+05 1.04E+0

2 

2.55E+05 4.24E+05 0.00E+00 0.00E+00 5.51E+05 2.39E+05 2.11E-20 

F3 

Best 0.00E+00 6.19E+01 1.77E-

30 

0.00E+00 4.78E+01 0.00E+00 0.00E+00 1.04E-03 3.31E+01 0.00E+00 

Media

n 

0.00E+00 1.36E+02 7.01E+0

1 

0.00E+00 9.55E+01 0.00E+00 0.00E+00 1.61E+01 7.56E+01 1.39E-21 

Mean 0.00E+00 1.41E+02 7.30E+0

1 

6.57E-33 9.79E+01 6.57E-33 0.00E+00 3.01E+01 7.80E+01 2.39E-15 

Worst 0.00E+00 2.24E+02 1.82E+0

2 

1.97E-31 1.70E+02 1.97E-31 0.00E+00 1.49E+02 1.29E+02 7.15E-14 

STD 0.00E+00 1.70E+03 3.47E+0

3 

1.25E-63 9.66E+02 1.25E-63 0.00E+00 1.37E+03 4.32E+02 1.65E-28 

F4 

Best 0.00E+00 1.66E+00 0.00E+0

0 

0.00E+00 2.15E+00 0.00E+00 0.00E+00 7.93E-08 3.61E+00 0.00E+00 

Media

n 

0.00E+00 6.93E+00 4.99E-

02 

0.00E+00 5.86E+00 0.00E+00 0.00E+00 6.60E+00 6.44E+00 0.00E+00 

Mean 0.00E+00 6.25E+00 3.87E-

01 

2.18E-01 6.07E+00 0.00E+00 0.00E+00 6.22E+00 6.42E+00 0.00E+00 

Worst 0.00E+00 9.44E+00 3.57E+0

0 

3.55E+00 1.09E+01 0.00E+00 0.00E+00 1.42E+01 1.04E+01 0.00E+00 

STD 0.00E+00 4.21E+00 5.31E-

01 

5.12E-01 4.54E+00 0.00E+00 0.00E+00 2.00E+01 2.75E+00 0.00E+00 

F5 

Best 0.00E+00 3.97E+04 1.30E-

21 

1.05E-83 6.72E+03 0.00E+00 2.64E-109 2.35E-05 5.14E+03 1.54E-19 

Media

n 

0.00E+00 1.64E+05 7.24E-

14 

2.70E-25 1.20E+05 0.00E+00 6.40E-94 2.25E-01 1.86E+04 1.29E-13 

Mean 0.00E+00 2.47E+05 2.96E+0

0 

4.65E-16 2.35E+05 0.00E+00 1.22E-76 1.16E+01 2.57E+04 7.63E-09 

Worst 0.00E+00 7.62E+05 1.94E+0

1 

1.39E-14 1.13E+06 0.00E+00 3.67E-75 1.14E+02 7.38E+04 2.29E-07 

STD 0.00E+00 3.75E+10 2.23E+0

1 

6.27E-30 7.97E+10 0.00E+00 4.33E-151 6.44E+02 3.47E+08 1.69E-15 

F6 

Best -2.22E-16 6.60E+01 2.65E-

02 

-2.22E-16 1.09E+01 -1.11E-16 -1.11E-16 2.55E-01 6.40E+01 3.44E-06 

Media

n 

-1.11E-16 5.35E+02 1.23E+0

0 

1.41E-01 3.19E+02 0.00E+00 1.71E-08 2.10E+00 2.23E+02 6.49E-05 

Mean -1.11E-16 5.42E+02 2.62E+0

0 

7.31E+01 3.27E+02 -7.40E-18 2.83E-05 9.27E+00 2.51E+02 2.54E-04 

Worst 0.00E+00 1.17E+03 2.48E+0

1 

7.20E+02 7.91E+02 0.00E+00 3.09E-04 1.61E+02 5.38E+02 1.85E-03 

STD 1.23E-32 8.95E+04 2.34E+0

1 

3.11E+04 4.52E+04 7.67E-34 4.84E-09 8.25E+02 1.71E+04 2.17E-07 

F7 

Best -2.22E-16 6.81E+03 3.45E-02 5.38E-03 7.28E+0

3 

0.00E+00 -2.22E-16 1.34E-01 1.72E+0

3 

1.19E-

07 

Media

n 

0.00E+00 7.44E+04 3.19E-01 6.79E-02 4.51E+0

4 

0.00E+00 3.28E-14 5.80E-01 5.01E+0

3 

1.77E-

05 

Mean -5.92E-17 9.24E+04 2.13E+00 6.96E-02 6.19E+0

4 

1.60E-270 5.78E-07 2.32E+00 5.75E+0

3 

3.25E-

05 

Worst 0.00E+00 2.40E+05 2.11E+01 1.92E-01 2.84E+0

5 

4.80E-269 1.15E-05 2.72E+01 2.13E+0

4 

2.32E-

04 

STD 9.64E-33 3.98E+09 2.03E+01 2.42E-03 3.85E+0

9 

0.00E+00 5.04E-12 2.90E+01 1.34E+0

7 

2.28E-

09 

F8 

Best 0.00E+00 5.78E+02 0.00E+00 0.00E+00 3.66E+0

2 

0.00E+00 0.00E+00 3.37E-05 4.05E+0

2 

0.00E+0

0 

Media

n 

0.00E+00 1.47E+03 0.00E+00 0.00E+00 7.36E+0

2 

0.00E+00 0.00E+00 3.95E-03 1.75E+0

3 

7.10E-

14 

Mean 0.00E+00 1.44E+03 0.00E+00 0.00E+00 8.20E+0

2 

0.00E+00 0.00E+00 1.86E+00 1.64E+0

3 

5.98E-

11 

Worst 0.00E+00 2.67E+03 0.00E+00 0.00E+00 1.45E+0

3 

0.00E+00 0.00E+00 3.63E+01 3.12E+0

3 

1.02E-

09 

STD 0.00E+00 2.34E+05 0.00E+00 0.00E+00 8.88E+0

4 

0.00E+00 0.00E+00 4.77E+01 5.33E+0

5 

3.74E-

20 

F9 

Best 0.00E+00 3.15E+00 1.78E-14 8.96E-96 1.32E-

04 

0.00E+00 1.34E-115 1.76E-03 2.35E+0

0 

7.11E-

14 

Media

n 

0.00E+00 5.82E+01 3.55E-14 8.88E-15 1.79E-

04 

5.96E-250 1.75E-110 2.06E-02 5.79E+0

0 

2.74E-

09 

Mean 0.00E+00 4.94E+01 3.29E-14 9.18E-15 1.19E+0

1 

6.50E-83 1.49E-99 3.49E-02 5.52E+0

0 

1.37E-

07 

Worst 0.00E+00 1.14E+02 3.55E-14 1.78E-14 9.33E+0

1 

1.95E-81 3.07E-98 2.57E-01 8.62E+0

0 

1.74E-

06 

STD 0.00E+00 1.42E+03 3.76E-29 3.41E-29 6.12E+0

2 

1.23E-163 3.57E-197 2.65E-03 3.73E+0

0 

1.23E-

13 

F10 

Best 0.00E+00 4.98E+01 5.19E+01 3.64E-02 4.97E+0

1 

0.00E+0

0 

4.21E-120 7.79E-02 4.99E+0

1 

2.68E-

04 

Media

n 

0.00E+00 5.13E+01 8.13E+01 9.98E-02 7.01E+0

1 

3.12E-

252 

1.66E-06 9.72E+01 5.08E+0

1 

9.50E-

04 

Mean 0.00E+00 5.23E+01 7.55E+01 9.69E-02 7.68E+0

1 

1.54E-

60 

1.02E-04 8.40E+01 5.35E+0

1 

1.39E-

03 

Worst 0.00E+00 8.05E+01 9.09E+01 1.83E-01 1.80E+0

2 

4.62E-

59 

1.73E-03 1.33E+02 7.91E+0

1 

5.04E-

03 

STD 0.00E+00 2.84E+01 1.69E+02 1.90E-03 9.18E+0

2 

6.88E-

119 

9.79E-08 1.54E+03 6.71E+0

1 

1.48E-

06 

 

Table 14 Rank of  CEC2021 benchmark functions (dim=20) 
 

ECO ALO GWO WOA SSA AOA HHO SCA MVO ROA 

F1 1 8 5 4 7 3 2 9 10 6 

F2 1 10 5 6 8 1 1 7 9 4 

F3 1 10 7 3 9 3 1 6 8 5 



F4 1 9 6 5 7 1 1 8 10 1 

F5 1 10 6 4 9 1 3 7 8 5 

F6 1 8 5 4 7 3 2 9 10 6 

F7 1 10 6 5 9 2 3 7 8 4 

F8 1 9 1 1 8 1 1 7 10 6 

F9 1 10 5 4 9 3 2 7 8 6 

F10 1 6 8 5 9 2 3 10 7 4 

Average Rank 1 9 5.4 4.1 8.2 2 1.9 7.7 8.8 4.7 

Final Ranking 1 10 6 4 8 3 2 7 9 5 

 

The results show that ECO outperforms the nine frontier algorithms being compared. More noteworthy is that ECO 

obtained the optimal solution for all ten test functions within 500 iterations whether in 2, 10, or 20 dimensions, which 

indicates that ECO is extremely powerful in searching and can deal with high local optimality of  combinatorial functions. 

There is no doubt that ECO is the winner in the CEC2021. 

The average convergence curves of  the ten algorithms are illustrated in Fig. 8 to Fig. 10 for the ten tested function 

species in 2, 10, and 20 dimensions, respectively. 

 

 Fig. 8 Comparison of  CEC2021 benchmark functions (dim=2)  

 



 

Fig. 9 Comparison of  CEC2021 benchmark functions (dim=10) 

Fig. 10 Comparison of  

CEC2021 benchmark functions (dim=20) 

3.4 Real-world applications 

In this section, we leverage the recently introduced ECO algorithm to address six distinct engineering design problems 

[59] and present the outcomes. These engineering optimization problems have been formulated to seek optimal solutions 

while adhering to specific conditions and constraints. 

Conventionally, metaheuristic algorithms aren't inherently designed to directly address constrained optimization 

problems. Nonetheless, through the integration of  constraint handling techniques (CHTs), these algorithms can adeptly 

handle both the objective function and associated constraints. In each iteration, the algorithm assesses the fitness of  the 

candidate swarm, taking into account both the objective function and constraints. Subsequently, the next generation of  

candidate swarms is appraised based on the computed fitness values. 

By employing the ECO algorithm in these engineering design problems, simultaneous consideration of  the objective 

function and constraints is achieved. This facilitates the search for optimal solutions that satisfy the design requirements and 

constraints. The effectiveness of  the ECO algorithm in handling complex engineering optimization problems is 

demonstrated through the integration of  CHTs. Utilizing the ECO algorithm in engineering design problems enables the 

simultaneous consideration of  both the objective function and constraints, thereby facilitating the pursuit of  optimal 



solutions that meet design specifications and constraints. The effectiveness of  the ECO algorithm in addressing intricate 

engineering optimization challenges is showcased through the incorporation of  CHTs. 

3.4.1 The tension/compression spring design (TSD) 

 

Fig. 11 Schematic illustration of  TSD 

The primary aim of  this challenge is to minimize the weight of  the tension/compression spring, emphasizing efficiency 

in material usage and design optimization [60], as showed in Fig. 11. The problem involves three decision variables: wire 

diameter (𝑑 = 𝑥1), mean coil diameter (𝐷 = 𝑥2), and the number of  active coils (𝑁 = 𝑥3). Eq. (14) is formulated to address 

this optimization challenge, and the outcomes are presented in Table 15, alongside the results obtained from other 

competing algorithms.  

Minimize: 

 𝑓(𝑙) = (𝑙3 + 2)𝑙2𝑙1
2   (14) 

subject to: 

 𝑔1(𝑙) = 1 −
4𝑙2
2−𝑙2𝑙3

7178514
≤ 0, 

 𝑔2(𝑙) =
4𝑙2
2−𝑙1𝑙2

12566(𝑙3𝑙1
3−𝑙1

4)
+

1

5108𝑙1
2 ≤ 0, 

 𝑔3(𝑙) = 1 −
150.45𝑙1

𝑙2
2𝑙3

≤ 0,  

 𝑔4(𝑙) =
𝑙1+𝑙2

1.5
− 1 ≤ 0, 

with bounds: 

 0.05 ≤ 𝑙1 ≤ 2.00,0.25 ≤ 𝑙2 ≤ 1.30,2.00 ≤ 𝑙3 ≤ 15.0 

Table 15 Results of  TSD problem 
 x1 x2 x3 x4 x5 Best Worst Average STD Median 

ECO 5.19E-02 3.62E-01 1.14E+01 5.09E+02 2.00E+00 1.27E-02 1.32E-02 1.31E-02 3.80E-08 1.32E-02 
ALO 5.19E-02 3.62E-01 1.06E+01 4.89E+02 2.00E+00 1.27E-02 1.42E-02 1.32E-02 2.41E-07 1.31E-02 
GWO 5.19E-02 3.62E-01 1.07E+01 1.60E+02 2.00E+00 1.27E-02 1.36E-02 1.28E-02 2.74E-08 1.27E-02 
WOA 5.27E-02 3.81E-01 9.70E+00 1.00E+03 2.00E+00 1.27E-02 1.78E-02 1.38E-02 1.20E-06 1.36E-02 
SSA 6.92E-02 9.41E-01 1.82E+00 8.00E+01 6.00E+01 1.80E-02 3.03E-02 2.28E-02 1.05E-05 2.26E-02 
AOA 5.22E-02 3.66E-01 1.09E+01 1.00E+03 2.00E+00 1.30E-02 3.18E-02 1.51E-02 2.99E-05 1.32E-02 
HHO 5.27E-02 3.81E-01 9.73E+00 2.33E+02 2.00E+00 1.27E-02 1.67E-02 1.39E-02 9.51E-07 1.36E-02 
SCA 5.07E-02 3.32E-01 1.35E+01 1.00E+03 2.00E+00 1.28E-02 1.33E-02 1.32E-02 1.33E-08 1.32E-02 
MVO 5.00E-02 3.10E-01 1.50E+01 9.51E+02 2.00E+00 1.32E-02 1.86E-02 1.71E-02 2.91E-06 1.79E-02 
ROA 5.37E-02 4.08E-01 8.70E+00 1.00E+03 2.00E+00 1.30E-02 1.63E-02 1.44E-02 8.84E-07 1.43E-02 

 



3.4.2 Gear train design (GTD) 

 
Fig. 12 Schematic illustration of  GTD 

This subsection verifies the ability of  the ECO algorithm to tackle the design problem of  gear trains. Fig. 12 displays 

a visual illustration of  this problem. The goal is to find the number of  teeth for each one of  the four wheels: A (= 𝑥1), B 

(= 𝑥2), C (= 𝑥3), and D (= 𝑥4) of  the gear to minimize the gear ratio. Eq. (15) is formulated to address this optimization 

challenge, and the outcomes are presented in Table 16, alongside the results obtained from other competing algorithms.  

Minimize: 

  𝑓(𝑥) = (
1

6.931
−
𝑥2𝑥3

𝑥1𝑥4
)2 (15) 

with bounds: 

12 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≤ 60. 

Table 16 Results of  GTD problem 
 x1 x2 x3 x4 Best Worst Average STD Median 

ECO 4.33E+01 1.64E+01 1.87E+01 4.91E+01 2.70E-12 9.92E-10 5.35E-10 1.73E-19 7.74E-10 
ALO 5.65E+01 3.08E+01 1.33E+01 4.94E+01 9.94E-11 2.73E-08 7.76E-09 8.18E-17 4.50E-09 
GWO 4.86E+01 1.62E+01 1.90E+01 4.29E+01 2.70E-12 2.36E-09 3.83E-10 3.25E-19 2.31E-11 
WOA 4.90E+01 1.94E+01 1.57E+01 4.34E+01 2.70E-12 2.73E-08 2.96E-09 3.25E-17 1.26E-09 
SSA 4.91E+01 1.64E+01 1.89E+01 4.31E+01 2.70E-12 1.12E-08 2.12E-09 7.09E-18 9.92E-10 
AOA 5.35E+01 2.56E+01 1.47E+01 5.07E+01 2.31E-11 2.73E-08 1.13E-08 1.20E-16 6.35E-09 
HHO 4.87E+01 1.93E+01 1.58E+01 4.27E+01 2.70E-12 2.73E-08 2.07E-09 2.38E-17 1.09E-09 
SCA 5.33E+01 1.53E+01 2.57E+01 5.12E+01 2.31E-11 1.62E-08 2.49E-09 1.03E-17 1.36E-09 
MVO 5.30E+01 1.27E+01 3.02E+01 5.06E+01 2.31E-11 2.36E-09 8.69E-10 5.22E-19 8.89E-10 
ROA 3.66E+01 2.33E+01 1.26E+01 5.64E+01 6.60E-10 3.10E-03 1.04E-04 3.11E-07 2.04E-08 

 

3.4.3 The optimal design of  an industrial refrigeration system (ODIS) 

The mathematical model of  this problem is described in [59]. This problem can be formulated as a nonlinear inequality 

constrained optimization problem, Eq. (16) is formulated. and the outcomes are presented in Table 17, alongside the results 

obtained from other competing algorithms.  

Minimize: 

 𝑓(�̄�) = 63098.88𝑥2𝑥4𝑥12 + 5441.5𝑥2
2𝑥12 + 115055.5𝑥2

1.664𝑥6 + 6172.27𝑥2
2𝑥6 

                +63098.88𝑥1𝑥3𝑥11 + 5441.5𝑥1
2𝑥11 + 115055.5𝑥1

1.664𝑥5 + 6172.27𝑥1
2𝑥5 

                       +140.53𝑥1𝑥11 + 281.29𝑥3𝑥11 + 70.26𝑥1
2 + 281.29𝑥1𝑥3 + 281.29𝑥3

2 

                                              +14437𝑥8
1.8812𝑥12

0.3424𝑥10𝑥14
−1𝑥1

2𝑥7𝑥9
−1 + 20470.2𝑥7

2.893𝑥11
0.316𝑥1

2 (16) 

subject to: 

𝑔1(�̄�) = 1.524𝑥7
−1 ≤ 0, 

𝑔2(�̄�) = 1.524𝑥8
−1 ≤ 1, 

𝑔3(�̄�) = 0.07789𝑥1 − 2𝑥7
−1𝑥9 − 1 ≤ 0, 

𝑔4(�̄�) = 7.05305𝑥9
−1𝑥1

2𝑥10𝑥8
−1𝑥2

−1𝑥14
−1 − 1 ≤ 0, 

𝑔5(�̄�) = 0.0833𝑥13
−1𝑥14 − 1 ≤ 0, 

𝑔6(�̄�) = 47.136𝑥2
0.333𝑥10

−1𝑥12 − 1.333𝑥8𝑥13
2.1195 + 62.08𝑥13

2.1195𝑥12
−1𝑥8

0.2𝑥10
−1 − 1 ≤ 0, 

𝑔7(�̄�) = 0.04771𝑥10𝑥8
1.8812𝑥12

0.3424 − 1 ≤ 0, 



𝑔8(�̄�) = 0.0488𝑥9𝑥7
1.893𝑥11

0.316 − 1 ≤ 0, 

𝑔9(�̄�) = 0.0099𝑥1𝑥3
−1 − 1 ≤ 0, 

( ) 1

10 2 40.0193 1 0g x x x−= −  , 

𝑔11(�̄�) = 0.0298𝑥1𝑥5
−1 − 1 ≤ 0, 

𝑔12(�̄�) = 0.056𝑥2𝑥6
−1 − 1 ≤ 0, 

𝑔13(�̄�) = 2𝑥9
−1 − 1 ≤ 0, 

𝑔14(�̄�) = 2𝑥10
−1 − 1 ≤ 0, 

𝑔15(�̄�) = 𝑥12𝑥11
−1 − 1 ≤ 0 

with bounds: 

0.001 5ix  ,𝑖 = 1,… ,14 1, ,14i = K . 

Table 17 Results of  ODIS problem 

 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 Best Worst 
Averag

e 
STD 

Media
n 

ECO 

1.00E-
03 

1.00E-
03 

1.00E-
03 

1.00E-
03 

1.00E-
03 

1.00E-
03 

1.55E
+00 

1.52E
+00 

4.97E
+00 

4.97E
+00 

2.86E-
01 

1.16E-
01 

3.74E-
02 

2.79E-
01 

2.85E-
01 

2.12E
+01 

5.73E
+00 

3.75E
+01 

2.91E
+00 

ALO 
1.00E-

03 
1.00E-

03 
1.00E-

03 
8.07E-

01 
1.00E-

03 
1.00E-

03 
1.62E
+00 

3.58E
+00 

4.05E
+00 

2.09E
+00 

1.00E-
03 

1.00E-
03 

6.60E-
03 

7.92E-
02 

2.21E-
01 

8.78E
+20 

1.18E
+20 

3.67E
+40 

9.64E
+19 

GWO 
1.00E-

03 
1.01E-

03 
1.07E-

03 
2.87E-

03 
1.60E-

03 
2.82E-

03 
1.53E
+00 

1.53E
+00 

4.99E
+00 

2.00E
+00 

2.86E-
03 

2.75E-
03 

1.17E-
02 

1.39E-
01 

3.76E-
02 

9.87E
+19 

1.27E
+19 

1.04E
+39 

5.58E-
02 

WOA 
1.00E-

03 
1.00E-

03 
1.00E-

03 
1.46E
+00 

1.10E-
03 

2.20E-
03 

1.52E
+00 

1.53E
+00 

5.00E
+00 

2.22E
+00 

1.57E-
03 

1.37E-
03 

2.02E-
03 

1.57E-
02 

2.85E-
01 

3.57E
+21 

6.32E
+20 

1.41E
+42 

4.91E
+06 

SSA 
1.00E-

03 
1.00E-

03 
1.00E-

03 
1.01E
+00 

9.75E-
01 

2.21E-
01 

2.62E
+00 

4.02E
+00 

4.64E
+00 

2.05E
+00 

9.72E-
02 

5.30E-
03 

1.47E-
02 

1.77E-
01 

2.17E
+00 

1.01E
+20 

3.35E
+18 

3.26E
+38 

2.69E
+01 

AOA 
1.00E-

03 
1.00E-

03 
1.00E-

03 
2.70E
+00 

1.80E
+00 

4.64E-
01 

1.79E
+00 

2.73E
+00 

5.00E
+00 

5.00E
+00 

3.37E-
03 

1.00E-
03 

5.16E-
03 

1.32E-
02 

4.07E
+00 

2.40E
+20 

7.06E
+19 

4.19E
+39 

9.31E
+19 

HHO 
1.00E-

03 
1.00E-

03 
1.00E-

03 
1.98E
+00 

1.00E-
03 

1.00E-
03 

1.98E
+00 

1.53E
+00 

2.01E
+00 

2.00E
+00 

1.00E-
03 

1.00E-
03 

6.35E-
03 

7.28E-
02 

2.27E-
01 

7.48E
+20 

4.40E
+19 

1.89E
+40 

1.86E
+03 

SCA 
1.01E-

03 
1.00E-

03 
1.63E-

03 
5.21E-

03 
1.47E-

03 
1.25E-

03 
1.99E
+00 

1.55E
+00 

5.00E
+00 

2.48E
+00 

9.78E-
03 

3.19E-
03 

1.27E-
02 

1.02E-
01 

9.29E-
02 

3.49E-
01 

2.01E-
01 

4.21E-
03 

1.90E-
01 

MVO 
1.00E-

03 
1.00E-

03 
1.00E-

03 
1.00E-

03 
1.00E-

03 
1.00E-

03 
2.08E
+00 

2.14E
+00 

2.53E
+00 

4.55E
+00 

2.14E-
01 

2.62E-
02 

4.80E-
02 

5.64E-
01 

3.30E-
01 

9.38E
+19 

2.50E
+19 

1.72E
+39 

5.46E
+00 

ROA 
5.63E-

02 
3.09E-

02 
1.61E-

01 
4.95E
+00 

2.24E
+00 

1.32E-
01 

8.13E-
01 

2.68E
+00 

4.95E
+00 

4.95E
+00 

2.77E
+00 

4.95E
+00 

4.95E
+00 

4.95E
+00 

3.96E
+20 

6.39E
+21 

3.88E
+21 

1.60E
+42 

4.34E
+21 

 



3.4.4 Multiple disk clutch brake design (MDCBD) 

 

Fig. 13 Schematic illustration of  MDCBD 

The multiple disk clutch brake design problem aims to minimize the mass of  the multiple disk clutch brake, as defined 

by Eq. (13). This problem is characterized by nine nonlinear constraints and involves five discrete design variables, namely 

the inner radius (𝑥1), outer radius (𝑥2), disk thickness (𝑥3), actuator force (𝑥4), and number of  frictional surfaces (𝑥5). The 

schematic representation of  this problem is depicted in Fig. 13. The results of  optimization algorithms applied to this 

problem are tabulated in Table 18, revealing the superior performance of  the ECO algorithm in comparison to other 

algorithms under consideration. 

Minimize: 

 𝑓(�̄�) = 𝜋(𝑥2
2 − 𝑥1

2)𝑥3(𝑥5 + 1)𝜌  (17) 

subject to: 

𝑔1(�̄�) = −𝑝𝑚𝑎𝑥 + 𝑝𝑟𝑧 ≤ 0, 

𝑔2(�̄�) = 𝑝𝑟𝑧𝑉𝑠𝑟 − 𝑉𝑠𝑟,𝑚𝑎𝑥𝑝𝑚𝑎𝑥 ≤ 0, 

𝑔3(�̄�) = 𝛥𝑅 + 𝑥1 − 𝑥2 ≤ 0, 

𝑔4(�̄�) = −𝐿𝑚𝑎𝑥 + (𝑥5 + 1)(𝑥3 + 𝛿) ≤ 0, 

𝑔5(�̄�) = 𝑠𝑀𝑠 −𝑀ℎ ≤ 0, 

𝑔6(�̄�) = 𝑇 ≥ 0, 

𝑔7(�̄�) = −𝑉𝑠𝑟,𝑚𝑎𝑥 + 𝑉𝑠𝑟 ≤ 0, 

𝑔7(�̄�) = 𝑇 − 𝑇𝑚𝑎𝑥 ≤ 0, 

where, 

𝑀ℎ =
2

3
𝜇𝑥4𝑥5

𝑥2
3−𝑥1

3

𝑥2
2−𝑥1

2𝑁.𝑚𝑚, 

𝜔 =
𝜋𝑛

30
𝑟𝑎𝑑 𝑠⁄ , 

𝐴 = 𝜋(𝑥2
2 − 𝑥1

2)𝑚𝑚2, 



𝑝𝑟𝑧 =
𝑥4

𝐴
𝑁 𝑚𝑚2⁄ , 

𝑉𝑠𝑟 =
𝜋𝑅𝑠𝑟𝑛

30
𝑚𝑚 𝑠⁄ , 

𝑅𝑠𝑟 =
2

3

𝑥2
3−𝑥1

3

𝑥2
2𝑥1

2 𝑚𝑚, 

𝑇 =
𝐼𝑧𝜔

𝑀
ℎ
+𝑀𝑓

, 

𝛥𝑅 = 20𝑚𝑚,𝐿𝑚𝑎𝑥 = 30𝑚𝑚,𝐿𝑚𝑎𝑥 = 30𝑚𝑚, 𝜇=0.6, 

𝑉𝑠𝑟,𝑚𝑎𝑥 = 10𝑚 𝑠⁄ ,𝛿 = 0.5𝑚𝑚, =1.5s , 

𝑇𝑚𝑎𝑥 = 15𝑠, 𝑛 = 250𝑟𝑝𝑚, 𝐼𝑧 = 55𝐾𝑔 ∙ 𝑚
2, 

𝑀𝑠 = 40𝑁𝑚,𝑀𝑓 = 3𝑁𝑚, and  𝑝𝑚𝑎𝑥 = 1 

with bounds: 

60 ≤ 𝑥1 ≤ 80,90 ≤ 𝑥2 ≤ 110,1 ≤ 𝑥3 ≤ 3 

0 ≤ 𝑥4 ≤ 1000,2 ≤ 𝑥5 ≤ 9. 

Table 18 Results of  MDCBD problem 
 x1 x2 x3 x4 x5 Best Worst Average STD Median 

ECO 7.00E+01 9.00E+01 1.00E+00 2.72E+02 2.00E+00 2.35E-01 2.35E-01 2.35E-01 3.30E-14 2.35E-01 
ALO 7.00E+01 9.00E+01 1.00E+00 4.89E+02 2.00E+00 2.35E-01 2.35E-01 2.35E-01 8.66E-17 2.35E-01 
GWO 7.00E+01 9.00E+01 1.00E+00 1.60E+02 2.00E+00 2.35E-01 2.36E-01 2.35E-01 5.00E-09 2.35E-01 
WOA 7.00E+01 9.00E+01 1.00E+00 1.00E+03 2.00E+00 2.35E-01 2.35E-01 2.35E-01 1.95E-14 2.35E-01 
SSA 6.00E+01 8.00E+01 6.00E+01 8.00E+01 6.00E+01 1.34E+27 1.34E+27 1.34E+27 0.00E+00 1.34E+27 
AOA 7.00E+01 9.00E+01 1.00E+00 1.00E+03 2.00E+00 2.35E-01 2.66E-01 2.40E-01 6.78E-05 2.36E-01 
HHO 7.00E+01 9.00E+01 1.00E+00 2.33E+02 2.00E+00 2.35E-01 2.35E-01 2.35E-01 2.59E-17 2.35E-01 
SCA 7.00E+01 9.00E+01 1.00E+00 1.00E+03 2.00E+00 2.35E-01 2.40E-01 2.37E-01 1.48E-06 2.37E-01 
MVO 7.00E+01 9.00E+01 1.00E+00 9.51E+02 2.00E+00 2.35E-01 2.53E-01 2.36E-01 1.04E-05 2.35E-01 
ROA 7.00E+01 9.00E+01 1.00E+00 1.00E+03 2.00E+00 2.35E-01 3.31E-01 3.04E-01 9.43E-04 3.15E-01 

 

 



3.4.5 Speed reducer design (SRD) 

 
Fig. 14 Schematic illustration of  SRD 

The primary aim of  the SRD problem, classified as a discrete challenge, is to identify the optimal weight for the speed 

reducer while adhering to four essential design constraints. These constraints encompass the bending stress of  the gear teeth, 

covering stress, transverse deflections of  the shafts, and stresses within the shafts, all depicted in Fig. 14. Consequently, the 

problem involves managing one discrete variable and six continuous variables. Specifically, 𝑥1 signifies the face width, 𝑥2 

represents the module of  teeth, and 𝑥3 denotes a discrete design variable pertaining to the arrangement of  teeth in the 

pinion. Correspondingly, 𝑥4 signifies the length of  the first shaft between bearings, while 𝑥5 pertains to the length of  the 

second shaft between bearings. The sixth and seventh design variables (𝑥6 and 𝑥7) correspond to the diameters of  the first 

and second shaft, respectively. The mathematical formulation of  this task is as follows. Table 19 reports the results obtained 

by optimization algorithms for this problem, in which ECO algorithms outperform other comparative algorithms.  

Minimize: 

 𝑓(𝑥) = 0.7854𝑥2
2𝑥1(14.9334𝑥3 − 43.0934 + 3.3333𝑥3

2) + 

0.7854(𝑥5𝑥7
2 + 𝑥4𝑥6

2) − 1.508𝑥1(𝑥7
2 + 𝑥6

2) + 7.477(𝑥7
2 + 𝑥6

2)  (18) 

subject to: 

𝑔1(𝑥) = −𝑥1𝑥2
2𝑥3 + 27 ≤ 0,  

𝑔2(𝑥) = −𝑥1𝑥2
2𝑥3 + 397.5 ≤ 0,  

𝑔3(𝑥) = −𝑥2𝑥6
4𝑥3𝑥4

−3 + 1.93 ≤ 0,  

𝑔4(𝑥) = −𝑥2𝑥7
4𝑥3𝑥5

−3 + 1.93 ≤ 0,  

𝑔5(𝑥) = 10𝑥6
−3√16.91 × 106 + (745𝑥4𝑥2

−1𝑥3
−1)2 − 1100 ≤ 0,  

𝑔6(𝑥) = 10𝑥7
−3√157.5 × 106 + (745𝑥5𝑥2

−1𝑥3
−1)2 − 850 ≤ 0,  

𝑔7(𝑥) = 𝑥2𝑥3 − 40 ≤ 0,  

𝑔8(𝑥) = −𝑥1𝑥2
−1 + 5 ≤ 0,  

𝑔9(𝑥) = 𝑥1𝑥2
−1 − 12 ≤ 0,  

𝑔10(𝑥) = 1.5𝑥6 − 𝑥4 + 1.9 ≤ 0,  

𝑔11(𝑥) = 1.1𝑥7 − 𝑥5 + 1.9 ≤ 0,  

where, 

2.6 ≤ 𝑥1 ≤ 3.6, 0.7 ≤ 𝑥2 ≤ 0.8, 17 ≤ 𝑥3 ≤ 28, 

𝑥4 ≤ 8.3, 7.3 ≤ 𝑥5, 2.9 ≤ 𝑥6 ≤ 3.9, 5 ≤ 𝑥7 ≤ 5.5,  



Table 19 Results of  SRD problem 
 x1 x2 x3 x4 x5 x6 x7 Best Worst Average STD Median 

ECO 3.50E+00 7.00E-01 1.70E+01 7.33E+00 7.72E+00 3.35E+00 5.29E+00 2.99E+03 3.04E+03 3.01E+03 1.43E+02 3.01E+03 
ALO 3.50E+00 7.00E-01 1.70E+01 7.40E+00 7.72E+00 3.35E+00 5.29E+00 3.00E+03 3.02E+03 3.00E+03 1.76E+01 3.01E+03 
GWO 3.50E+00 7.00E-01 1.70E+01 7.37E+00 7.84E+00 3.35E+00 5.29E+00 3.00E+03 3.03E+03 3.01E+03 2.80E+01 3.01E+03 
WOA 3.50E+00 7.00E-01 1.70E+01 7.98E+00 8.03E+00 3.38E+00 5.29E+00 3.01E+03 5.32E+03 3.26E+03 1.97E+05 3.13E+03 
SSA 3.60E+00 3.60E+00 3.60E+00 3.60E+00 2.60E+00 3.35E+00 3.60E+00 3.39E+26 3.39E+26 3.39E+26 3.43E+39 3.39E+26 
AOA 3.60E+00 7.00E-01 1.70E+01 8.30E+00 8.30E+00 3.36E+00 5.30E+00 3.07E+03 3.23E+03 3.16E+03 1.96E+03 3.17E+03 
HHO 3.53E+00 7.00E-01 1.70E+01 8.04E+00 8.07E+00 3.35E+00 5.30E+00 3.03E+03 5.37E+03 3.66E+03 4.08E+05 3.49E+03 
SCA 3.57E+00 7.00E-01 1.70E+01 7.60E+00 8.23E+00 3.39E+00 5.32E+00 3.07E+03 3.20E+03 3.14E+03 1.73E+03 3.14E+03 
MVO 3.50E+00 7.00E-01 1.70E+01 7.90E+00 8.27E+00 3.36E+00 5.29E+00 3.02E+03 3.08E+03 3.05E+03 1.84E+02 3.05E+03 
ROA 3.52E+00 7.00E-01 1.70E+01 8.12E+00 8.12E+00 3.49E+00 5.29E+00 3.06E+03 2.50E+19 2.17E+18 3.62E+37 3.26E+03 

 

3.4.6 Rolling element bearing design (REBD) 

 

Fig. 15 Schematic illustration of  REBD 

This engineering problem involves 10 geometric variables and considers nine assembly constraints along with 

geometric-based limitations. Our objective in addressing this scenario is to optimize (maximize) the dynamic load-carrying 

capacity. The formulation of  this test case is outlined below. The schematic of  this problem is shown in Fig. 15. Table 20 

reports the obtained results of  optimization algorithms for this problem in which ECO algorithms outperform other 

comparative algorithms.  

Maximize： 

 𝑓(�̄�) = {
𝑓𝑐𝑍

2

3𝐷𝑏
1.8  𝑖𝑓  𝐷𝑏 ≤ 25.4mm

3.647𝑓𝑐𝑍
2

3𝐷𝑏
1.4 ,otherwise

 (19) 

where： 

𝑔1(�̄�) = 𝑍 −
𝜙0

2 𝑠𝑖𝑛−1(
𝐷𝑏
𝐷𝑚

)
− 1 ≤ 0， 

𝑔2(�̄�) = 𝐾𝐷𝑚𝑖𝑛(𝐷 − 𝑑) − 2𝐷𝑏 ≤ 0， 

𝑔3(�̄�) = 2𝐷𝑏 − 𝐾𝐷𝑚𝑎𝑥(𝐷 − 𝑑) ≤ 0， 

𝑔4(�̄�) = 𝐷𝑏 −𝑤 ≤ 0， 

𝑔5(�̄�) = 0.5(𝐷 + 𝑑) − 𝐷𝑚 ≤ 0， 

𝑔6(�̄�) = 𝐷𝑚 − (0.5 + 𝑒)(𝐷 + 𝑑) ≤ 0， 

𝑔7(�̄�) = 𝜉𝐷𝑏 − 0.5(𝐷 − 𝐷𝑚 − 𝐷𝑏) ≤ 0， 

𝑔8(�̄�) = 0.515 − 𝑓𝑖 ≤ 0， 

𝑔9(�̄�) = 0.515 − 𝑓0 ≤ 0， 

where, 



𝑓𝑐 = 37.91{1 + {1.04 (
1 − 𝛾

1 + 𝛾
)
1.72

(
𝑓𝑖(2𝑓0 − 1)

𝑓0(2𝑓𝑖 − 1)
)

0.41

}

10
3

}

−0.3

, 𝛾 =
𝐷𝑏 𝑐𝑜𝑠(𝛼)

𝐷𝑚
, 𝑓𝑖 =

𝑟𝑖
𝐷𝑏
, 𝑓0 =

𝑟0
𝐷𝑏

 

𝜙0 = 2𝜋 − 2 × 𝑐𝑜𝑠
−1

(

 
 
 
 {

(𝐷 − 𝑑)

2 − 3 (
𝑇
4
)
}

2

+ {
𝐷
2 − (

𝑇
4) − 𝐷𝑏}

2

− {
𝑑

2 + (
𝑇
4
)
}

2

2 {
(𝐷 − 𝑑)

2 − 3 (
𝑇
4)} {

𝐷
2 − (

𝑇
4) − 𝐷𝑏}

)

 
 
 
 

 

𝑇 = 𝐷 = 𝑑 − 2𝐷𝑏, 𝐷 = 160, 𝑑 = 90, 𝐵𝑤 = 30. 

with bounds： 

0.5(𝐷 + 𝑑) ≤ 𝐷𝑚 ≤ 0.6(𝐷 + 𝑑)， 

0.15(𝐷 − 𝑑) ≤ 𝐷𝑏 ≤ 0.45(𝐷 − 𝑑)， 

4 ≤ 𝑍 ≤ 50， 

0.515 ≤ 𝑓𝑖 ≤ 0.6， 

0.515 ≤ 𝑓0 ≤ 0.6， 

0.4 ≤ 𝐾𝐷𝑚𝑖𝑛 ≤ 0.5， 

0.6 ≤ 𝐾𝐷𝑚𝑎𝑥 ≤ 0.7， 

0.3 ≤ 𝜉 ≤ 0.4， 

0.02 ≤ 𝑒 ≤ 0.1， 

0.6 ≤ 𝜁 ≤ 0.85， 

Table 20 Results of  REBD problem 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 Best Worst Average STD Median 

1.26E+0
2 

2.14E+0
1 

1.06E+0
1 

5.15E-01 5.89E-01 4.98E-01 6.98E-01 3.02E-01 9.03E-02 6.35E-01 -
8.52E+0

4 

-
8.35E+0

4 

-
8.45E+0

4 

5.72E+0
4 

-
8.45E+0

4 
1.26E+0

2 
2.14E+0

1 
1.14E+0

1 
5.15E-01 5.15E-01 4.00E-01 6.19E-01 3.00E-01 9.96E-02 6.00E-01 -

8.55E+0
4 

-
8.46E+0

4 

-
8.54E+0

4 

5.54E+0
4 

-
8.55E+0

4 
1.26E+0

2 
2.14E+0

1 
1.10E+0

1 
5.15E-01 5.64E-01 4.86E-01 6.95E-01 3.00E-01 2.26E-02 6.18E-01 -

8.55E+0
4 

-
8.47E+0

4 

-
8.53E+0

4 

2.84E+0
4 

-
8.54E+0

4 
1.25E+0

2 
2.14E+0

1 
1.09E+0

1 
5.15E-01 5.25E-01 4.10E-01 6.11E-01 3.08E-01 3.15E-02 6.44E-01 -

8.51E+0
4 

-
4.52E+0

4 

-
7.67E+0

4 

1.05E+0
8 

-
8.17E+0

4 
1.25E+0

2 
1.25E+0

2 
1.50E+0

2 
1.50E+0

2 
1.25E+0

2 
1.50E+0

2 
1.25E+0

2 
1.50E+0

2 
1.25E+0

2 
1.25E+0

2 
6.55E+0

4 
6.55E+0

4 
6.55E+0

4 
0.00E+0

0 
6.55E+0

4 
1.25E+0

2 
2.19E+0

1 
9.61E+0

0 
5.15E-01 5.61E-01 4.00E-01 6.45E-01 3.00E-01 2.42E-02 6.00E-01 -

8.32E+0
4 

-
6.87E+0

4 

-
7.59E+0

4 

1.66E+0
7 

-
7.68E+0

4 
1.26E+0

2 
2.14E+0

1 
1.13E+0

1 
5.15E-01 5.15E-01 4.38E-01 6.25E-01 3.00E-01 5.63E-02 6.66E-01 -

8.55E+0
4 

-
4.23E+0

4 

-
6.80E+0

4 

2.25E+0
8 

-
6.98E+0

4 
1.25E+0

2 
2.12E+0

1 
1.12E+0

1 
5.15E-01 5.15E-01 4.00E-01 7.00E-01 3.00E-01 2.00E-02 6.00E-01 -

8.36E+0
4 

-
7.12E+0

4 

-
7.90E+0

4 

7.82E+0
6 

-
7.91E+0

4 
1.26E+0

2 
2.14E+0

1 
1.08E+0

1 
5.15E-01 5.20E-01 4.46E-01 6.75E-01 3.00E-01 9.29E-02 6.78E-01 -

8.55E+0
4 

-
7.85E+0

4 

-
8.48E+0

4 

2.82E+0
6 

-
8.54E+0

4 
1.25E+0

2 
2.10E+0

1 
1.12E+0

1 
5.15E-01 5.15E-01 4.00E-01 6.00E-01 3.00E-01 5.42E-02 6.00E-01 -

8.25E+0
4 

-
7.08E+0

4 

-
8.07E+0

4 

9.96E+0
6 

-
8.21E+0

4 

 

3.4.7 The ECO algorithm is good at solving real-world problems 

Table 21 Rank of  real-world problem 

 ECO ALO GWO WOA SSA AOA HHO SCA MVO ROA 

TSD 2 4 1 5 10 8 6 3 9 7 

GTD 2 8 1 7 5 9 4 6 3 10 

ODIS 2 8 4 9 3 7 6 1 5 10 

MDCBD 1 3 5 4 10 8 2 7 6 9 

SRD 2 1 3 7 10 6 8 5 4 9 

REBD 4 1 2 7 10 8 9 6 3 5 



Average Rank 2.17 4.17 2.67 6.50 8.00 7.67 5.83 4.67 5.00 8.33 

Final Ranking 1 3 2 7 9 8 6 4 5 10 

Table 21 presents the performance evaluation of  the ECO algorithm and nine existing frontier algorithms on six real-

world engineering problems. The outcomes unequivocally indicate that the ECO algorithm outperforms the other nine 

optimization algorithms and exhibits superior stability. These findings demonstrate the compelling competitiveness of  the 

ECO algorithm in regard to solving optimization problems with realistic constraints. The algorithm's consistently delivering 

excellent results further underscores its potential as an effective and robust optimization tool for real-world applications. 

3.5 Strengths and limitations of  the ECO 

As highlighted in the paper, the proposed ECO algorithm demonstrates significant theoretical potential in solving a 

wide range of  optimization problems and surpasses nine state-of-the-art algorithms. ECO adopts a simulation of  intense 

competition in education by categorizing populations into schools and students. It performs exceptionally well in handling 

single-peak, multipeak, and hybrid functions and in solving practical real-world problems. 

It's essential to acknowledge that, like many other algorithms, ECO does not guarantee the computation of  an optimal 

solution. Particularly, when the initial solution is already close to the optimal solution (e.g., cases F21-F23), the ECO 

algorithm may exhibit a lower convergence rate, necessitating more iterations to obtain a better solution. Future research 

should prioritize further evaluating the performance of  ECO on real-world problems, which will offer valuable insights and 

contribute to its continuous enhancement. 

Moreover, the experimental findings suggest that ECO may occasionally converge to local optimal solutions within a 

limited set of  functions, as exemplified by F13 among the 23 classical test functions. Addressing this issue warrants further 

investigation in our upcoming research endeavors. 

4 Conclusions and future works 

In conclusion, the Educational Competition Optimizer (ECO) presented in this paper has demonstrated its 

effectiveness as a meta-heuristic algorithm inspired by educational competition.  ECO models the progressive 

competitiveness of  students through three stages: elementary, middle, and high school, effectively mirroring the process of  

acquiring a better education. The algorithm classifies students into two categories based on learning patience and employs 

an alternating stage strategy to achieve rapid convergence, demonstrating its potential for solving optimization problems, 

particularly in constrained engineering design scenarios. 

In the experiments we conducted, we initially performed a comprehensive parameter sensitivity analysis to optimize 

ECO's performance, revealing that a population size of  40 offers the highest performance. Interestingly, the population size 

does not correlate linearly with convergence ability. Subsequently, ECO was rigorously compared with nine state-of-the-art 

algorithms across a diverse set of  functions encompassing single-peak, multimodal, hybrid, and combined functions. The 

results showcased ECO's superior ability to balance exploration and exploitation, positioning it as a robust contender among 

its peers. Moreover, ECO exhibited its prowess by successfully addressing five engineering optimization problems. In 

comparative evaluations against nine renowned algorithms, ECO consistently outperformed or held its ground in five 

selected performance metrics. This robust and efficient performance can be theoretically attributed to three key factors: 1) 

A constant alternation of  exploration and exploitation through a strategy involving three educational competition phases 

for efficient convergence. 2) A multi-strategy search methodology ensuring algorithmic stochasticity and population diversity. 

3) Drawing inspiration from merit-based educational competition to eliminate low-quality solutions from the search 

population, effectively reducing performance degradation. 

While ECO has demonstrated its potential, areas warranting further investigation in future research remain. Striking 

the optimal balance between the three phases of  ECO presents a significant challenge but can potentially enhance algorithm 

efficiency and performance. Besides, the application of  ECO can also be extended to other domains such as energy [61], 

image segmentation [62], the Internet of  Things [63], or scheduling problems [64], thereby enhancing its universality. 

Moreover, delving into hybrid methodologies that fuse ECO with other well-established metaheuristics shows great potential. 

These efforts could yield more robust and adaptable optimization techniques, unlocking novel avenues and potentially 

propelling the field of  optimization forward significantly. 
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